8 research outputs found

    Novel Biocompatible Polysaccharide-Based Eutectogels with Tunable Rheological, Thermal, and Mechanical Properties: The Role of Water

    No full text
    The natural deep eutectic solvent (NADES) is an excellent solvent for insoluble natural products and medicines. Eutectogels formed by gelation of NADESs are interesting materials that deserve attention. In this study, xanthan gum was used as a gelator to gel choline chloride-xylitol with different water contents in virtue of the excellent solubility of choline chloride-xylitol (1:1) to quercetin. We observed that water was critical to the formation of eutectogels. An MTT assay indicated that our eutectogel had excellent biocompatibility as its corresponding hydrogel. According to rheological tests, xanthan gum-based eutectogels had better viscoelastic properties, higher thermal stability, and more defined shear thinning behavior than its corresponding hydrogel. Texture profile analysis showed that eutectogels with less water content had higher hardness and adhesiveness. Meanwhile, Differential scanning calorimeter (DSC) results suggested that the various rheological and texture properties of eutectogels could be attributed to changes in the water state, which was influenced by the hydrogen bonding network of NADES. This biocompatible eutectogel with tunable properties was expected to find applications in novel drug delivery vehicles, which are widely used in the fields of medicine and food

    Extraction of Ursolic Acid from Apple Peel with Hydrophobic Deep Eutectic Solvents: Comparison between Response Surface Methodology and Artificial Neural Networks

    No full text
    Extracting ursolic acid (UA) from plant resources using organic solvents is incompatible with food applications. To address this, in this study, 15 edible hydrophobic deep eutectic solvents (HDESs) were prepared to extract UA from apple peel, the extraction conditions were optimized, and the optimization strategies were compared. It was found that the solubility of UA in the HDESs can be 9 times higher than the traditional solvent such as ethanol. The response surface optimization concluded that temperature had the greatest effect on the extraction and the optimized test conditions obtained as follows: temperature of 49 °C, time of 32 min, solid–liquid ratio of 1:16.5 g/mL, respectively. Comparing the response surface methodology (RSM) and artificial neural networks (ANN), it was concluded that ANN has more accurate prediction ability than RSM. Overall, the HDESs are more effective and environmentally friendly than conventional organic solvents to extract UA. The results of this study will facilitate the further exploration of HDES in various food and pharmaceutical applications

    Genomic and Transcriptomic Analysis Reveal Multiple Strategies for the Cadmium Tolerance in <i>Vibrio parahaemolyticus</i> N10-18 Isolated from Aquatic Animal <i>Ostrea gigas Thunberg</i>

    No full text
    The waterborne Vibrio parahaemolyticus can cause acute gastroenteritis, wound infection, and septicemia in humans. Pollution of heavy metals in aquatic environments is proposed to link high incidence of the multidrug-resistant (MDR) pathogen. Nevertheless, the genome evolution and heavy metal tolerance mechanism of V. parahaemolyticus in aquatic animals remain to be largely unveiled. Here, we overcome the limitation by characterizing an MDR V. parahaemolyticus N10-18 isolate with high cadmium (Cd) tolerance using genomic and transcriptomic techniques. The draft genome sequence (4,910,080 bp) of V. parahaemolyticus N10-18 recovered from Ostrea gigas Thunberg was determined, and 722 of 4653 predicted genes had unknown function. Comparative genomic analysis revealed mobile genetic elements (n = 11) and heavy metal and antibiotic-resistance genes (n = 38 and 7). The bacterium significantly changed cell membrane structure to resist the Cd2+ (50 μg/mL) stress (p p V. parahaemolyticus

    Phytochemical activators of Nrf2: a review of therapeutic strategies in diabetes

    No full text
    Insulin resistance (IR) is fundamental to the development of type 2 diabetes (T2D), and altered mitochondrial function and abnormal lipid distribution are closely associated with IR or T2D. Excess oxidative stress-induced mitochondrial damage leads to an imbalance in redox homeostasis, which is considered the major contributor to the progression of diabetes. A key cellular defense mechanism, namely, the nuclear factor-E2 p45-related factor 2 (Nrf2)-antioxidant response element (ARE) pathway, plays an essential protective role in combating excess oxidative stress. A series of phytochemicals are reported to improve IR and restore mitochondrial function against excess oxidative stress by activating the Nrf2-ARE signaling pathway to maintain cellular reactive oxygen species (ROS) homeostasis. The present review focuses on key knowledge gaps in the Nrf2-ARE system targeted by phytochemicals and its correlation to diabetes both in the in vitro and in vivo models and recent achievements in human clinical trials to evaluate its efficiency and safety. In addition, we provide an overview of recent research progress in nutrigenomics, precision nutrition and the interactions occurring in gut microbiota associated with the Nrf2-ARE signaling pathway and diabetes chemoprevention by phytochemicals and finally propose a future research strategy for regulating redox and microbiota balance via the Nrf2-ARE pathway. The present review aims to help us comprehensively understand the critical chemopreventive role of the Nrf2-ARE pathway targeted by phytochemicals in diabetes

    Beneficial Effects of Theaflavins on Metabolic Syndrome: From Molecular Evidence to Gut Microbiome

    No full text
    In recent years, many natural foods and herbs rich in phytochemicals have been proposed as health supplements for patients with metabolic syndrome (MetS). Theaflavins (TFs) are a polyphenol hydroxyl substance with the structure of diphenol ketone, and they have the potential to prevent and treat a wide range of MetS. However, the stability and bioavailability of TFs are poor. TFs have the marvelous ability to alleviate MetS through antiobesity and lipid-lowering (AMPK-FoxO3A-MnSOD, PPAR, AMPK, PI3K/Akt), hypoglycemic (IRS-1/Akt/GLUT4, Ca2+/CaMKK2-AMPK, SGLT1), and uric-acid-lowering (XO, GLUT9, OAT) effects, and the modulation of the gut microbiota (increasing beneficial gut microbiota such as Akkermansia and Prevotella). This paper summarizes and updates the bioavailability of TFs, and the available signaling pathways and molecular evidence on the functionalities of TFs against metabolic abnormalities in vitro and in vivo, representing a promising opportunity to prevent MetS in the future with the utilization of TFs

    Discovery of New Triterpenoids Extracted from <i>Camellia oleifera</i> Seed Cake and the Molecular Mechanism Underlying Their Antitumor Activity

    No full text
    Theasaponin derivatives, which are reported to exert antitumor activity, have been widely reported to exist in edible plants, including in the seed cake of Camellia oleifera (C.), which is extensively grown in south of China. The purpose of this study was to isolate new theasaponin derivatives from C. seed cake and explore their potential antitumor activity and their underlying molecular mechanism. In the present study, we first isolated and identified four theasaponin derivatives (compounds 1, 2, 3, and 4) from the total aglycone extract of the seed cake of Camellia oleifera by utilizing a combination of pre-acid-hydrolysis treatment and activity-guided isolation. Among them, compound 1 (C1) and compound 4 (C4) are newly discovered theasaponins that have not been reported before. The structures of these two new compounds were characterized based on comprehensive 1D and 2D NMR spectroscopy and high-resolution mass spectrometry, as well as data reported in the literature. Secondly, the cytotoxicity and antitumor property of the above four purified compounds were evaluated in selected typical tumor cell lines, Huh-7, HepG2, Hela, A549, and SGC7901, and the results showed that the ED50 value of C4 ranges from 1.5 to 11.3 µM, which is comparable to that of cisplatinum (CDDP) in these five cell lines, indicating that C4 has the most powerful antitumor activity among them. Finally, a preliminary mechanistic investigation was performed to uncover the molecular mechanism underlying the antitumor property of C4, and the results suggested that C4 may trigger apoptosis through the Bcl-2/Caspase-3 and JAK2/STAT3 pathways, and stimulate cell proliferation via the NF-κB/iNOS/COX-2 pathway. Moreover, it was surprising to find that C4 can inhibit the Nrf2/HO-1 pathway, which indicates that C4 has the potency to overcome the resistance to cancer drugs. Therefore, C1 and C4 are two newly identified theasaponin derivatives with antitumor activity from the seed cake of Camellia oleifera, and C4 is a promising antitumor candidate not only for its powerful antitumor activity, but also for its ability to function as an Nrf2 inhibitor to enhance the anticancer drug sensitivity
    corecore