619 research outputs found
ARPES insights on the metallic states of YbB6(001): E(k) dispersion, temporal changes and spatial variation
We report high resolution Angle Resolved PhotoElectron Spectroscopy (ARPES)
results on the (001) cleavage surface of YbB, a rare-earth compound which
has been recently predicted to host surface electronic states with topological
character. We observe two types of well-resolved metallic states, whose Fermi
contours encircle the time-reversal invariant momenta of the YbB(001)
surface Brillouin zone, and whose full (E,)-dispersion relation can be
measured wholly unmasked by states from the rest of the electronic structure.
Although the two-dimensional character of these metallic states is confirmed by
their lack of out-of-plane dispersion, two new aspects are revealed in these
experiments. Firstly, these states do not resemble two branches of opposite,
linear velocity that cross at a Dirac point, but rather straightforward
parabolas which terminate to high binding energy with a clear band bottom.
Secondly, these states are sensitive to time-dependent changes of the YbB
surface under ultrahigh vacuum conditions. Adding the fact that these data from
cleaved YbB surfaces also display spatial variations in the electronic
structure, it appears there is little in common between the theoretical
expectations for an idealized YbB(001) crystal truncation on the one
hand, and these ARPES data from real cleavage surfaces on the other.Comment: 8 pages, 4 figures (accepted in Physical Review B
A Cloud-Computing-Based Data Placement Strategy in High-Speed Railway
As an important component of China’s transportation data sharing system, high-speed railway data sharing is a typical application of data-intensive computing. Currently, most high-speed railway data is shared in cloud computing environment. Thus, there is an urgent need for an effective cloud-computing-based data placement strategy in high-speed railway. In this paper, a new data placement strategy named hierarchical structure data placement strategy is proposed. The proposed method combines the semidefinite programming algorithm with the dynamic interval mapping algorithm. The semi-definite programming algorithm is suitable for the placement of files with various replications, ensuring that different replications of a file are placed on different storage devices, while the dynamic interval mapping algorithm ensures better self-adaptability of the data storage system. A hierarchical data placement strategy is proposed for large-scale networks. In this paper, a new theoretical analysis is provided, which is put in comparison with several other previous data placement approaches, showing the efficacy of the new analysis in several experiments
- …
