106 research outputs found

    Remote Sensing Application in the Maritime Search and Rescue

    Get PDF

    On the Over-Memorization During Natural, Robust and Catastrophic Overfitting

    Full text link
    Overfitting negatively impacts the generalization ability of deep neural networks (DNNs) in both natural and adversarial training. Existing methods struggle to consistently address different types of overfitting, typically designing strategies that focus separately on either natural or adversarial patterns. In this work, we adopt a unified perspective by solely focusing on natural patterns to explore different types of overfitting. Specifically, we examine the memorization effect in DNNs and reveal a shared behaviour termed over-memorization, which impairs their generalization capacity. This behaviour manifests as DNNs suddenly becoming high-confidence in predicting certain training patterns and retaining a persistent memory for them. Furthermore, when DNNs over-memorize an adversarial pattern, they tend to simultaneously exhibit high-confidence prediction for the corresponding natural pattern. These findings motivate us to holistically mitigate different types of overfitting by hindering the DNNs from over-memorization natural patterns. To this end, we propose a general framework, Distraction Over-Memorization (DOM), which explicitly prevents over-memorization by either removing or augmenting the high-confidence natural patterns. Extensive experiments demonstrate the effectiveness of our proposed method in mitigating overfitting across various training paradigms

    Strength-Adaptive Adversarial Training

    Full text link
    Adversarial training (AT) is proved to reliably improve network's robustness against adversarial data. However, current AT with a pre-specified perturbation budget has limitations in learning a robust network. Firstly, applying a pre-specified perturbation budget on networks of various model capacities will yield divergent degree of robustness disparity between natural and robust accuracies, which deviates from robust network's desideratum. Secondly, the attack strength of adversarial training data constrained by the pre-specified perturbation budget fails to upgrade as the growth of network robustness, which leads to robust overfitting and further degrades the adversarial robustness. To overcome these limitations, we propose \emph{Strength-Adaptive Adversarial Training} (SAAT). Specifically, the adversary employs an adversarial loss constraint to generate adversarial training data. Under this constraint, the perturbation budget will be adaptively adjusted according to the training state of adversarial data, which can effectively avoid robust overfitting. Besides, SAAT explicitly constrains the attack strength of training data through the adversarial loss, which manipulates model capacity scheduling during training, and thereby can flexibly control the degree of robustness disparity and adjust the tradeoff between natural accuracy and robustness. Extensive experiments show that our proposal boosts the robustness of adversarial training

    GPT4AIGChip: Towards Next-Generation AI Accelerator Design Automation via Large Language Models

    Full text link
    The remarkable capabilities and intricate nature of Artificial Intelligence (AI) have dramatically escalated the imperative for specialized AI accelerators. Nonetheless, designing these accelerators for various AI workloads remains both labor- and time-intensive. While existing design exploration and automation tools can partially alleviate the need for extensive human involvement, they still demand substantial hardware expertise, posing a barrier to non-experts and stifling AI accelerator development. Motivated by the astonishing potential of large language models (LLMs) for generating high-quality content in response to human language instructions, we embark on this work to examine the possibility of harnessing LLMs to automate AI accelerator design. Through this endeavor, we develop GPT4AIGChip, a framework intended to democratize AI accelerator design by leveraging human natural languages instead of domain-specific languages. Specifically, we first perform an in-depth investigation into LLMs' limitations and capabilities for AI accelerator design, thus aiding our understanding of our current position and garnering insights into LLM-powered automated AI accelerator design. Furthermore, drawing inspiration from the above insights, we develop a framework called GPT4AIGChip, which features an automated demo-augmented prompt-generation pipeline utilizing in-context learning to guide LLMs towards creating high-quality AI accelerator design. To our knowledge, this work is the first to demonstrate an effective pipeline for LLM-powered automated AI accelerator generation. Accordingly, we anticipate that our insights and framework can serve as a catalyst for innovations in next-generation LLM-powered design automation tools.Comment: Accepted by ICCAD 202
    • …
    corecore