190 research outputs found

    ICPC: Instance-Conditioned Prompting with Contrastive Learning for Semantic Segmentation

    Full text link
    Modern supervised semantic segmentation methods are usually finetuned based on the supervised or self-supervised models pre-trained on ImageNet. Recent work shows that transferring the knowledge from CLIP to semantic segmentation via prompt learning can achieve promising performance. The performance boost comes from the feature enhancement with multimodal alignment, i.e., the dot product between vision and text embeddings. However, how to improve the multimodal alignment for better transfer performance in dense tasks remains underexplored. In this work, we focus on improving the quality of vision-text alignment from two aspects of prompting design and loss function, and present an instance-conditioned prompting with contrastive learning (ICPC) framework. First, compared with the static prompt designs, we reveal that dynamic prompting conditioned on image content can more efficiently utilize the text encoder for complex dense tasks. Second, we propose an align-guided contrastive loss to refine the alignment of vision and text embeddings. We further propose lightweight multi-scale alignment for better performance. Extensive experiments on three large-scale datasets (ADE20K, COCO-Stuff10k, and ADE20K-Full) demonstrate that ICPC brings consistent improvements across diverse backbones. Taking ResNet-50 as an example, ICPC outperforms the state-of-the-art counterpart by 1.71%, 1.05%, and 1.41% mIoU on the three datasets, respectively

    RegionBLIP: A Unified Multi-modal Pre-training Framework for Holistic and Regional Comprehension

    Full text link
    In this work, we investigate extending the comprehension of Multi-modal Large Language Models (MLLMs) to regional objects. To this end, we propose to extract features corresponding to regional objects as soft prompts for LLM, which provides a straightforward and scalable approach and eliminates the need for LLM fine-tuning. To effectively extract regional features from regular image features and irregular point cloud features, we present a novel and unified position-assisted feature extraction module. Furthermore, training an MLLM from scratch is highly time-consuming. Thus, we propose incrementally extending existing pre-trained MLLMs to comprehend more modalities and the regional objects of those modalities. Specifically, we freeze the Q-Former from BLIP-2, an impressive MLLM, and optimize the modality-specific Lora parameters in Q-Former and LLM for each newly introduced modality. The freezing of the Q-Former eliminates the need for extensive pre-training on massive image-text data. The freezed Q-Former pre-trained from massive image-text data is also beneficial for the pre-training on image-region-text data. We name our framework RegionBLIP. We pre-train RegionBLIP on image-region-text, point-cloud-text, and point-cloud-region-text data. Experimental results verify that \Ours{} can preserve the image comprehension capability of BILP-2 and further gain a comprehension of the newly introduced point cloud modality and regional objects. The Data, Code, and Pre-trained models will be available at https://github.com/mightyzau/RegionBLIP

    Improved Neural Radiance Fields Using Pseudo-depth and Fusion

    Full text link
    Since the advent of Neural Radiance Fields, novel view synthesis has received tremendous attention. The existing approach for the generalization of radiance field reconstruction primarily constructs an encoding volume from nearby source images as additional inputs. However, these approaches cannot efficiently encode the geometric information of real scenes with various scale objects/structures. In this work, we propose constructing multi-scale encoding volumes and providing multi-scale geometry information to NeRF models. To make the constructed volumes as close as possible to the surfaces of objects in the scene and the rendered depth more accurate, we propose to perform depth prediction and radiance field reconstruction simultaneously. The predicted depth map will be used to supervise the rendered depth, narrow the depth range, and guide points sampling. Finally, the geometric information contained in point volume features may be inaccurate due to occlusion, lighting, etc. To this end, we propose enhancing the point volume feature from depth-guided neighbor feature fusion. Experiments demonstrate the superior performance of our method in both novel view synthesis and dense geometry modeling without per-scene optimization
    • …
    corecore