5,905 research outputs found

    Modulating Image Restoration with Continual Levels via Adaptive Feature Modification Layers

    Full text link
    In image restoration tasks, like denoising and super resolution, continual modulation of restoration levels is of great importance for real-world applications, but has failed most of existing deep learning based image restoration methods. Learning from discrete and fixed restoration levels, deep models cannot be easily generalized to data of continuous and unseen levels. This topic is rarely touched in literature, due to the difficulty of modulating well-trained models with certain hyper-parameters. We make a step forward by proposing a unified CNN framework that consists of few additional parameters than a single-level model yet could handle arbitrary restoration levels between a start and an end level. The additional module, namely AdaFM layer, performs channel-wise feature modification, and can adapt a model to another restoration level with high accuracy. By simply tweaking an interpolation coefficient, the intermediate model - AdaFM-Net could generate smooth and continuous restoration effects without artifacts. Extensive experiments on three image restoration tasks demonstrate the effectiveness of both model training and modulation testing. Besides, we carefully investigate the properties of AdaFM layers, providing a detailed guidance on the usage of the proposed method.Comment: Accepted by CVPR 2019 (oral); code is available: https://github.com/hejingwenhejingwen/AdaF

    Semantic Image Synthesis via Adversarial Learning

    Full text link
    In this paper, we propose a way of synthesizing realistic images directly with natural language description, which has many useful applications, e.g. intelligent image manipulation. We attempt to accomplish such synthesis: given a source image and a target text description, our model synthesizes images to meet two requirements: 1) being realistic while matching the target text description; 2) maintaining other image features that are irrelevant to the text description. The model should be able to disentangle the semantic information from the two modalities (image and text), and generate new images from the combined semantics. To achieve this, we proposed an end-to-end neural architecture that leverages adversarial learning to automatically learn implicit loss functions, which are optimized to fulfill the aforementioned two requirements. We have evaluated our model by conducting experiments on Caltech-200 bird dataset and Oxford-102 flower dataset, and have demonstrated that our model is capable of synthesizing realistic images that match the given descriptions, while still maintain other features of original images.Comment: Accepted to ICCV 201

    Bounded perturbation resilience of extragradient-type methods and their applications

    Full text link
    In this paper we study the bounded perturbation resilience of the extragradient and the subgradient extragradient methods for solving variational inequality (VI) problem in real Hilbert spaces. This is an important property of algorithms which guarantees the convergence of the scheme under summable errors, meaning that an inexact version of the methods can also be considered. Moreover, once an algorithm is proved to be bounded perturbation resilience, superiorizion can be used, and this allows flexibility in choosing the bounded perturbations in order to obtain a superior solution, as well explained in the paper. We also discuss some inertial extragradient methods. Under mild and standard assumptions of monotonicity and Lipschitz continuity of the VI's associated mapping, convergence of the perturbed extragradient and subgradient extragradient methods is proved. In addition we show that the perturbed algorithms converges at the rate of O(1/t)O(1/t). Numerical illustrations are given to demonstrate the performances of the algorithms.Comment: Accepted for publication in The Journal of Inequalities and Applications. arXiv admin note: text overlap with arXiv:1711.01936 and text overlap with arXiv:1507.07302 by other author
    • …
    corecore