3,000 research outputs found

    Transmission resonance in a composite plasmonic structure

    Full text link
    The design, fabrication, and optical properties of a composite plasmonic structure, a two-dimentional array of split-ring resonators inserted into periodic square holes of a metal film, have been reported. A new type of transmission resonance, which makes a significant difference from the conventional peaks, has been suggested both theoretically and experimentally. To understand this effect, a mechanism of ring- resonance induced dipole emission is proposed.Comment: 14 pages, 4 figure

    Time-resolved boson sampling with photons of different colors

    Get PDF
    Interference of multiple photons via a linear-optical network has profound applications for quantum foundation, quantum metrology and quantum computation. Particularly, a boson sampling experiment with a moderate number of photons becomes intractable even for the most powerful classical computers, and will lead to "quantum supremacy". Scaling up from small-scale experiments requires highly indistinguishable single photons, which may be prohibited for many physical systems. Here we experimentally demonstrate a time-resolved version of boson sampling by using photons not overlapping in their frequency spectra from three atomic-ensemble quantum memories. Time-resolved measurement enables us to observe nonclassical multiphoton correlation landscapes. An average fidelity over several interferometer configurations is measured to be 0.936(13), which is mainly limited by high-order events. Symmetries in the landscapes are identified to reflect symmetries of the optical network. Our work thus provides a route towards quantum supremacy with distinguishable photons.Comment: 5 pages, 3 figures, 1 tabl

    Characterization of a novel porcine parvovirus tentatively designated PPV5

    Get PDF
    A new porcine parvovirus (PPV), provisionally designated as PPV5, was identified in U.S. pigs. Cloning and sequencing from a circular or head-to-tail concatemeric array revealed that the PPV5 possesses the typical genomic organization of parvoviruses with two major predicted open reading frames (ORF1 and ORF2), and is most closely related to PPV4 with overall genomic identities of 64.1-67.3%. The amino acid identities between PPV5 and PPV4 were 84.6%-85.1% for ORF1 and 54.0%-54.3% for ORF2. Unlike PPV4, but similar to bovine parvovirus 2 (BPV2), PPV5 lacks the additional ORF3 and has a much longer ORF2. Moreover, the amino acid sequences of ORF1 and ORF2 of BPV2 showed higher homologies to PPV5 than to PPV4. The conserved motifs of the Ca(2+) binding loop (YXGXG) and the catalytic center (HDXXY) of phospholipase A2 (PLA2) were identified in VP1 (ORF2) of PPV5, as well as in BPV2, but were not present in PPV4. Phylogenetic analyses revealed that PPV5, PPV4 and BPV2 form a separate clade different from the genera Parvovirus and Bocavirus. Further epidemiologic investigations of PPV4 and PPV5 in U.S. pigs of different ages indicated a slightly higher prevalence for PPV5 (6.6%; 32/483) compared to PPV4 (4.1%; 20/483), with detection of concurrent PPV4 and PPV5 in 15.6% (7/45) of lungs of infected pigs. Evidence for potential vertical transmission or association with reproductive failure was minimal for both PPV4 and PPV5. The high similarity to PPV4 and the lack of ORF3 may suggest PPV5 is an intermediate of PPV4 during the evolution of parvoviruses in pigs
    • …
    corecore