867 research outputs found

    Accelerator Based Fusion Reactor

    Get PDF
    A feasibility study of fusion reactors based on accelerators is carried out. We consider a novel scheme where a beam from the accelerator hits the target plasma on the resonance of the fusion reaction and establish characteristic criteria for a workable reactor. We consider the reactions d+tn+α,d+3Hep+α d + t \rightarrow n + \alpha, d + {}^3H_e \rightarrow p + \alpha, and p+11B3αp + {}^{11}B \rightarrow 3 \alpha in this study. The critical temperature of the plasma is determined from overcoming the stopping power of the beam with the fusion energy gain. The needed plasma lifetime is determined from the width of the resonance, the beam velocity and the plasma density. We estimate the critical beam flux by balancing the energy of fusion production against the plasma thermo-energy and the loss due to stopping power for the case of an inert plasma. The product of critical flux and plasma lifetime is independent of plasma density and has a weak dependence on temperature. Even though the critical temperatures for these reactions are lower than those for the thermonuclear reactors, the critical flux is in the range of 10221024/cm2/s10^{22} - 10^{24}/\rm{cm^2/s} for the plasma density ρt=1015/cm3\rho_t = 10^{15}/{\rm cm^3} in the case of an inert plasma. Several approaches to control the growth of the two-stream instability are discussed. We have also considered several scenarios for practical implementation which will require further studies. Finally, we consider the case where the injected beam at the resonance energy maintains the plasma temperature and prolongs its lifetime to reach a steady state. The equations for power balance and particle number conservation are given for this case.Comment: To be published in Nuclear Fusion as a letter, 7 pages, 2 figure

    Spin-orbit coupling induced fractionalized Skyrmion excitations in rotating and rapidly quenched spin-1 Bose-Einstein condensates

    Full text link
    We investigate the fractionalized Skyrmion excitations induced by spin-orbit coupling in rotating and rapidly quenched spin-1 Bose-Einstein condensates. Our results show that the fractionalized Skyrmion excitation depends on the combination of spin-orbit coupling and rotation, and it originates from a dipole structure of spin which is always embedded in three vortices constructed by each condensate component respectively. When spin-orbit coupling is larger than a critical value, the fractionalized Skyrmions encircle the center with one or several circles to form a radial lattice, which occurs even in the strong ferromagnetic/antiferromagnetic condensates. We can use both the spin-orbit coupling and the rotation to adjust the radial lattice. The realization and the detection of the fractionalized Skyrmions are compatible with current experimental technology.Comment: 5 pages, 4 figure

    Approaches to the Total Synthesis of Puupehenone-Type Marine Natural Products

    Get PDF
    Puupehenones have been isolated from the marine sponge Chondrosia chucalla, which belong to a growing family of natural products with more than 100 members. These marine natural products have attracted increasing attention mainly due to their wide variety of biological activities such as antitumor, antiviral, and anti-HIV, and thus offer promising opportunities for new drug development. This chapter covers the approaches to the total synthesis of puupehenone-type marine natural products including puupehenol, puupehenone, puupehedione, and halopuupehenones. The routes begin with the construction of their basic skeletons, followed by the modification of their C- and D-rings. The contents are divided into two sections in terms of the key strategies employed to construct the basic skeleton. One is the convergent synthesis route with two synthons coupled by nucleophilic or electrophilic reaction, and the other is the linear synthesis route with polyene series cyclization as a key reaction
    corecore