4,175 research outputs found
Beating the fundamental rate-distance limit in a proof-of-principle quantum key distribution system
With the help of quantum key distribution (QKD), two distant peers are able
to share information-theoretically secure key bits. Increasing key rate is
ultimately significant for the applications of QKD in lossy channel. However,
it has proved that there is a fundamental rate-distance limit, named linear
bound, which limits the performance of all existing repeaterless protocols and
realizations. Surprisingly, a recently proposed protocol, called twin-field
(TF) QKD can beat linear bound with no need of quantum repeaters. Here, we
present the first implementation of TF-QKD protocol and demonstrate its
advantage of beating linear bound at the channel distance of 300 km. In our
experiment, a modified TF-QKD protocol which does not assume phase
post-selection is considered, and thus higher key rate than the original one is
expected. After well controlling the phase evolution of the twin fields
travelling hundreds of kilometers of optical fibres, the implemented system
achieves high-visibility single-photon interference, and allows stable and
high-rate measurement-device-independent QKD. Our experimental demonstration
and results confirm the feasibility of the TF-QKD protocol and its prominent
superiority in long distance key distribution services
Tourmaline composition probes serpentinite-derived fluid mobility in subduction zones
Serpentinite dehydration in subduction zones plays a pivotal role in geochemical cycling on Earth. A number of geochemical studies on arc magmas have elucidated the contributions of serpentinite-derived fluids to mantle sources. However, due to complex geological overprints during subduction zone processes, discerning serpentinite signatures in exposed metamorphic rocks within fossil subduction zones remains challenging. In this study we address these difficulties through in-situ investigations of tourmaline, the geochemistry of which reflects the host environment as well as potential fluid-induced processes. The presence of zonations in tourmaline makes it an excellent recorder of consecutive geological events. Integrated major and trace elements along with in-situ boron isotopes of tourmaline from the high-pressure Sopron area (Hungary) in the Eastern Alps were used to unravel fluid action sourced from serpentinite. Despite the presence of color zoning, tourmaline in the orthogneiss (Tur-G) has low XMg [Mg/(Mg + Fe)] of ca. 0.3–0.6 and δ11B values of around −11 ‰, along with variable trace element compositions. Petrological observations and geochemical analyses suggest that the inner domains of Tur-G are of igneous origin, while the outer rims are likely affected by subsequent metamorphic events. Tourmaline in metasomatized kyanite-quartzite (Tur-K) veins exhibits distinct geochemical zoning, and preserves metamorphic cores and fluid-induced rims. The inner domains of Tur-K display low XMg (<0.6), relatively high trace element concentrations and δ11B values of less than −10 ‰, whereas the overgrowths exhibit extremely high XMg values (>0.99), low trace element concentrations and high δ11B values reaching up to +21 ‰, clearly indicating the incorporation of serpentinite-derived Mg-11B-rich fluids. Through comparison with other metamorphic and metasomatic tourmalines in (ultra)high-pressure rocks globally, we establish that tourmaline with high XMg > 0.85 and δ11B values >0 ‰ may serve as an effective proxy for detecting serpentinite-derived fluids in subduction zones
Dynamic correlations in symmetric electron-electron and electron-hole bilayers
The ground-state behavior of the symmetric electron-electron and
electron-hole bilayers is studied by including dynamic correlation effects
within the quantum version of Singwi, Tosi, Land, and Sjolander (qSTLS) theory.
The static pair-correlation functions, the local-field correction factors, and
the ground-state energy are calculated over a wide range of carrier density and
layer spacing. The possibility of a phase transition into a density-modulated
ground state is also investigated. Results for both the electron-electron and
electron-hole bilayers are compared with those of recent diffusion Monte Carlo
(DMC) simulation studies. We find that the qSTLS results differ markedly from
those of the conventional STLS approach and compare in the overall more
favorably with the DMC predictions. An important result is that the qSTLS
theory signals a phase transition from the liquid to the coupled Wigner crystal
ground state, in both the electron-electron and electron-hole bilayers, below a
critical density and in the close proximity of layers (d <~ r_sa_0^*), in
qualitative agreement with the findings of the DMC simulations.Comment: 13 pages, 11 figures, 2 table
- …