732 research outputs found

    Integration of Particle-Gas Systems with Stiff Mutual Drag Interaction

    Full text link
    Numerical simulation of numerous mm/cm-sized particles embedded in a gaseous disk has become an important tool in the study of planet formation and in understanding the dust distribution in observed protoplanetary disks. However, the mutual drag force between the gas and the particles can become so stiff, particularly because of small particles and/or strong local solid concentration, that an explicit integration of this system is computationally formidable. In this work, we consider the integration of the mutual drag force in a system of Eulerian gas and Lagrangian solid particles. Despite the entanglement between the gas and the particles under the particle-mesh construct, we are able to devise a numerical algorithm that effectively decomposes the globally coupled system of equations for the mutual drag force and makes it possible to integrate this system on a cell-by-cell basis, which considerably reduces the computational task required. We use an analytical solution for the temporal evolution of each cell to relieve the time-step constraint posed by the mutual drag force as well as to achieve the highest degree of accuracy. To validate our algorithm, we use an extensive suite of benchmarks with known solutions in one, two, and three dimensions, including the linear growth and the nonlinear saturation of the streaming instability. We demonstrate numerical convergence and satisfactory consistency in all cases. Our algorithm can for example be applied to model the evolution of the streaming instability with mm/cm-sized pebbles at high mass loading, which has important consequences for the formation scenarios of planetesimals.Comment: Accepted for publication in the Astrophysical Journal Supplement Series. 21 pages, 15 figures. Fixed cross references for equation

    On the Feeding Zone of Planetesimal Formation by the Streaming Instability

    Full text link
    The streaming instability is a promising mechanism to overcome the barriers in direct dust growth and lead to the formation of planetesimals. Most previous studies of the streaming instability, however, were focused on a local region of a protoplanetary disk with a limited simulation domain such that only one filamentary concentration of solids has been observed. The characteristic separation between filaments is therefore not known. To address this, we conduct the largest-scale simulations of the streaming instability to date, with computational domains up to 1.6 gas scale heights both horizontally and vertically. The large dynamical range allows the effect of vertical gas stratification to become prominent. We observe more frequent merging and splitting of filaments in simulation boxes of high vertical extent. We find multiple filamentary concentrations of solids with an average separation of about 0.2 local gas scale heights, much higher than the most unstable wavelength from linear stability analysis. This measures the characteristic separation of planetesimal forming events driven by the streaming instability and thus the initial feeding zone of planetesimals.Comment: AASTeX preprint, 21 pages, including 7 figures. Accepted by Ap

    Initial mass function of planetesimals formed by the streaming instability

    Full text link
    The streaming instability is a mechanism to concentrate solid particles into overdense filaments that undergo gravitational collapse and form planetesimals. However, it remains unclear how the initial mass function of these planetesimals depends on the box dimensions of numerical simulations. To resolve this, we perform simulations of planetesimal formation with the largest box dimensions to date, allowing planetesimals to form simultaneously in multiple filaments that can only emerge within such large simulation boxes. In our simulations, planetesimals with sizes between 80 km and several hundred kilometers form. We find that a power law with a rather shallow exponential cutoff at the high-mass end represents the cumulative birth mass function better than an integrated power law. The steepness of the exponential cutoff is largely independent of box dimensions and resolution, while the exponent of the power law is not constrained at the resolutions we employ. Moreover, we find that the characteristic mass scale of the exponential cutoff correlates with the mass budget in each filament. Together with previous studies of high-resolution simulations with small box domains, our results therefore imply that the cumulative birth mass function of planetesimals is consistent with an exponentially tapered power law with a power-law exponent of approximately -1.6 and a steepness of the exponential cutoff in the range of 0.3-0.4.Comment: 11 pages, 5 figures, 3 tables; accepted for publication in Astronomy & Astrophysics; language editing complete

    Diffusion and Concentration of Solids in the Dead Zone of a Protoplanetary Disk

    Full text link
    The streaming instability is a promising mechanism to drive the formation of planetesimals in protoplanetary disks. To trigger this process, it has been argued that sedimentation of solids onto the mid-plane needs to be efficient, and therefore that a quiescent gaseous environment is required. It is often suggested that dead-zone or disk-wind structure created by non-ideal magnetohydrodynamical (MHD) effects meets this requirement. However, simulations have shown that the mid-plane of a dead zone is not completely quiescent. In order to examine the concentration of solids in such an environment, we use the local-shearing-box approximation to simulate a particlegas system with an Ohmic dead zone including mutual drag force between the gas and the solids. We systematically compare the evolution of the system with ideal or non-ideal MHD, with or without backreaction drag force from particles on gas, and with varying solid abundances. Similar to previous investigations of deadzone dynamics, we find that particles of dimensionless stopping time ts = 0.1 do not sediment appreciably more than those in ideal magnetorotational turbulence, resulting in a vertical scale height an order of magnitude larger than in a laminar disk. Contrary to the expectation that this should curb the formation of planetesimals, we nevertheless find that strong clumping of solids still occurs in the dead zone when solid abundances are similar to the critical value for a laminar environment. This can be explained by the weak radial diffusion of particles near the mid-plane. The results imply that the sedimentation of particles to the mid-plane is not a necessary criterion for the formation of planetesimals by the streaming instability

    Streaming Instability With Multiple Dust Species-II. Turbulence and Dust-Gas Dynamics at Non-linear Saturation

    Full text link
    The streaming instability is a fundamental process that can drive dust-gas dynamics and ultimately planetesimal formation in protoplanetary discs. As a linear instability, it has been shown that its growth with a distribution of dust sizes can be classified into two distinct regimes, fast-and slow-growth, depending on the dust-size distribution and the total dust-To-gas density ratio . Using numerical simulations of an unstratified disc, we bring three cases in different regimes into non-linear saturation. We find that the saturation states of the two fast-growth cases are similar to its single-species counterparts. The one with maximum dimensionless stopping time Ď„s,max = 0.1 and = 2 drives turbulent vertical dust-gas vortices, while the other with Ď„s,max = 2 and = 0.2 leads to radial traffic jams and filamentary structures of dust particles. The dust density distribution for the former is flat in low densities, while the one for the latter has a low-end cut-off. By contrast, the one slow-growth case results in a virtually quiescent state. Moreover, we find that in the fast-growth regime, significant dust segregation by size occurs, with large particles moving towards dense regions while small particles remain in the diffuse regions, and the mean radial drift of each dust species is appreciably altered from the (initial) drag-force equilibrium. The former effect may skew the spectral index derived from multiwavelength observations and change the initial size distribution of a pebble cloud for planetesimal formation. The latter along with turbulent diffusion may influence the radial transport and mixing of solid materials in young protoplanetary discs

    Streaming Instability With Multiple Dust Species-II. Turbulence and Dust-Gas Dynamics at Non-linear Saturation

    Full text link
    The streaming instability is a fundamental process that can drive dust-gas dynamics and ultimately planetesimal formation in protoplanetary discs. As a linear instability, it has been shown that its growth with a distribution of dust sizes can be classified into two distinct regimes, fast-and slow-growth, depending on the dust-size distribution and the total dust-To-gas density ratio . Using numerical simulations of an unstratified disc, we bring three cases in different regimes into non-linear saturation. We find that the saturation states of the two fast-growth cases are similar to its single-species counterparts. The one with maximum dimensionless stopping time Ď„s,max = 0.1 and = 2 drives turbulent vertical dust-gas vortices, while the other with Ď„s,max = 2 and = 0.2 leads to radial traffic jams and filamentary structures of dust particles. The dust density distribution for the former is flat in low densities, while the one for the latter has a low-end cut-off. By contrast, the one slow-growth case results in a virtually quiescent state. Moreover, we find that in the fast-growth regime, significant dust segregation by size occurs, with large particles moving towards dense regions while small particles remain in the diffuse regions, and the mean radial drift of each dust species is appreciably altered from the (initial) drag-force equilibrium. The former effect may skew the spectral index derived from multiwavelength observations and change the initial size distribution of a pebble cloud for planetesimal formation. The latter along with turbulent diffusion may influence the radial transport and mixing of solid materials in young protoplanetary discs

    Star Formation in the LMC: Gravitational Instability and Dynamical Triggering

    Get PDF
    Evidence for triggered star formation is difficult to establish because energy feedback from massive stars tend to erase the interstellar conditions that led to the star formation. Young stellar objects (YSOs) mark sites of {\it current} star formation whose ambient conditions have not been significantly altered. Spitzer observations of the Large Magellanic Cloud (LMC) effectively reveal massive YSOs. The inventory of massive YSOs, in conjunction with surveys of interstellar medium, allows us to examine the conditions for star formation: spontaneous or triggered. We examine the relationship between star formation and gravitational instability on a global scale, and we present evidence of triggered star formation on local scales in the LMC.Comment: 6 pages, 6 figures, IAU Symposium 237, Triggered Star Formation in a Turbulent Medium, eds. Elmegreen and Palou
    • …
    corecore