1,231 research outputs found
Cloud-based Image Processing System with Priority-based Data Distribution Mechanism
[[abstract]]Most users process short tasks using MapReduce. In other words, most tasks handled by the Map and Reduce functions require low response time. Currently, quite few users use MapReduce for 2D to 3D image processing, which is highly complicated and requires long execution time. However, in our opinion, MapReduce is exactly suitable for processing applications of high complexity and high computation. This paper implements MapReduce on an integrated 2D to 3D multi-user system, in which Map is responsible for image processing procedures of high complexity and high computation, and Reduce is responsible for integrating the intermediate data processed by Map for the final output. Different from short tasks, when several users compete simultaneously to acquire data from MapReduce for 2D to 3D applications, data that waits to be processed by Map will be delayed by the current user and Reduce has to wait until the completion of all Map tasks to generate the final result. Therefore, a novel scheduling scheme, Dynamic Switch of Reduce Function (DSRF) Algorithm, is proposed in this paper for MapReduce to switch dynamically to the next task according to the achieved percentage of tasks and reduce the idle time of Reduce. By using Hadoop to implement our MapReduce platform, we compare the performance of traditional Hadoop with our proposed scheme. The experimental results reveal that our proposed scheduling scheme efficiently enhances MapReduce performance in running 2D to 3D applications.[[incitationindex]]SCI[[booktype]]紙本[[booktype]]電子
Privacy Preserving Utility Mining: A Survey
In big data era, the collected data usually contains rich information and
hidden knowledge. Utility-oriented pattern mining and analytics have shown a
powerful ability to explore these ubiquitous data, which may be collected from
various fields and applications, such as market basket analysis, retail,
click-stream analysis, medical analysis, and bioinformatics. However, analysis
of these data with sensitive private information raises privacy concerns. To
achieve better trade-off between utility maximizing and privacy preserving,
Privacy-Preserving Utility Mining (PPUM) has become a critical issue in recent
years. In this paper, we provide a comprehensive overview of PPUM. We first
present the background of utility mining, privacy-preserving data mining and
PPUM, then introduce the related preliminaries and problem formulation of PPUM,
as well as some key evaluation criteria for PPUM. In particular, we present and
discuss the current state-of-the-art PPUM algorithms, as well as their
advantages and deficiencies in detail. Finally, we highlight and discuss some
technical challenges and open directions for future research on PPUM.Comment: 2018 IEEE International Conference on Big Data, 10 page
When Causal Intervention Meets Adversarial Examples and Image Masking for Deep Neural Networks
Discovering and exploiting the causality in deep neural networks (DNNs) are
crucial challenges for understanding and reasoning causal effects (CE) on an
explainable visual model. "Intervention" has been widely used for recognizing a
causal relation ontologically. In this paper, we propose a causal inference
framework for visual reasoning via do-calculus. To study the intervention
effects on pixel-level features for causal reasoning, we introduce pixel-wise
masking and adversarial perturbation. In our framework, CE is calculated using
features in a latent space and perturbed prediction from a DNN-based model. We
further provide the first look into the characteristics of discovered CE of
adversarially perturbed images generated by gradient-based methods
\footnote{~~https://github.com/jjaacckkyy63/Causal-Intervention-AE-wAdvImg}.
Experimental results show that CE is a competitive and robust index for
understanding DNNs when compared with conventional methods such as
class-activation mappings (CAMs) on the Chest X-Ray-14 dataset for
human-interpretable feature(s) (e.g., symptom) reasoning. Moreover, CE holds
promises for detecting adversarial examples as it possesses distinct
characteristics in the presence of adversarial perturbations.Comment: Noted our camera-ready version has changed the title. "When Causal
Intervention Meets Adversarial Examples and Image Masking for Deep Neural
Networks" as the v3 official paper title in IEEE Proceeding. Please use it in
your formal reference. Accepted at IEEE ICIP 2019. Pytorch code has released
on https://github.com/jjaacckkyy63/Causal-Intervention-AE-wAdvIm
- …