13,108 research outputs found

    Momentum-resolved TDDFT algorithm in atomic basis for real time tracking of electronic excitation

    Full text link
    Ultrafast electronic dynamics in solids lies at the core of modern condensed matter and materials physics. To build up a practical ab initio method for studying solids under photoexcitation, we develop a momentum-resolved real-time time dependent density functional theory (rt-TDDFT)algorithm using numerical atomic basis, together with the implementation of both the length and vector gauge of the electromagnetic field. When applied to simulate elementary excitations in two-dimensional materials such as graphene, different excitation modes, only distinguishable in momentum space, are observed. The momentum-resolved rt-TDDFT is important and computationally efficient for the study of ultrafast dynamics in extended systems

    Non-spectator Contributions To The Lifetime of Λb\Lambda_{b}

    Full text link
    In this work, we evaluate the contributions of non-spectator effects to the lifetimes of Λb\Lambda_b and B-mesons. Based on the well-established models and within a reasonable range of the concerned parameters, the contributions can reduce the lifetime of Λb\Lambda_b by 787 \sim 8% compared to that of B-mesons which are not significantly affected. This might partly explain the measured ratio τ(Λb)/τ(B0)=0.79\tau(\Lambda_{b})/\tau(B^{0})=0.79 \cite{Data}, which has been a long-standing discrepancy between theory and experimental data

    A strongly correlated metal built from Sachdev-Ye-Kitaev models

    Full text link
    Strongly correlated metals comprise an enduring puzzle at the heart of condensed matter physics. Commonly a highly renormalized heavy Fermi liquid occurs below a small coherence scale, while at higher temperatures a broad incoherent regime pertains in which quasi-particle description fails. Despite the ubiquity of this phenomenology, strong correlations and quantum fluctuations make it challenging to study. The Sachdev-Ye-Kitaev(SYK) model describes a 0+10+1D quantum cluster with random all-to-all \emph{four}-fermion interactions among NN Fermion modes which becomes exactly solvable as NN\rightarrow \infty, exhibiting a zero-dimensional non-Fermi liquid with emergent conformal symmetry and complete absence of quasi-particles. Here we study a lattice of complex-fermion SYK dots with random inter-site \emph{quadratic} hopping. Combining the imaginary time path integral with \emph{real} time path integral formulation, we obtain a heavy Fermi liquid to incoherent metal crossover in full detail, including thermodynamics, low temperature Landau quasiparticle interactions, and both electrical and thermal conductivity at all scales. We find linear in temperature resistivity in the incoherent regime, and a Lorentz ratio LκρTL\equiv \frac{\kappa\rho}{T} varies between two universal values as a function of temperature. Our work exemplifies an analytically controlled study of a strongly correlated metal.Comment: 17 pages, 6 figure
    corecore