10,991 research outputs found

    The trouble with asymptotically safe inflation

    Full text link
    In this paper we investigate the perturbation theory of the asymptotically safe inflation and we find that all modes of gravitational waves perturbation become ghosts in order to achieve a large enough number of e-folds. Formally we can calculate the power spectrum of gravitational waves perturbation, but we find that it is negative. It indicates that there is serious trouble with the asymptotically safe inflation.Comment: 13 pages, 1 figur

    Annealing and Precipitation Behavior During Batch Annealing of HSLA Steels

    Get PDF
    To gain a fundamental understanding of the factors responsible for the kinetics of annealing behavior during batch annealing for high strength low alloy (HSLA) steels, studies have been conducted to analyze the influence of alloy composition, hot band state, cold rolling reduction (CR%), heating rate, soaking temperature and time, etc. on the annealing behavior of HSLA steels during batch annealing process. The recrystallization kinetics was mainly controlled by several key parameters such as stored energy, precipitation and/or solute drag, special grain boundaries, and texture, etc. The combination of Electron Back-Scattered Diffraction (EBSD) technique and the Sub-grain Method was used to construct and analyze stored energy distribution maps before and during the batch annealing process of cold rolled HSLA steels. Precipitation behavior was studied using Scanning Electron Microscopy (SEM), Energy Dispersive X-ray Spectroscopy (EDS), Transmission Electron Microscopy (TEM), and High Resolution TEM (TEM). Grain boundary characteristic and texture fibers were also analyzed using EBSD scanning data. The results show that different composition and processing parameters would cause different hot band microstructure and different amounts of dislocation density, i.e., stored energy, remained in the alloys after hot rolling deformation. Higher dislocation density in the hot band steel will cause even higher dislocation density in the sheet steel after cold rolling deformation, which will cause higher recrystallization speed at early stages. If precipitates were formed during annealing, their formation would consume part of the stored energy and decreased some driving force. The new formed fine TiC precipitates would also apply certain pinning force on the grain boundaries, which dragged the moving of those boundaries, i.e., lowered the recrystallization speed further. Certain special grain boundaries like Coincident Site Lattice (CSL) boundaries have very low boundary energy and mobility. The higher volume fraction of this kind of boundaries would also slow down the recrystallization process. Texture could not be a critical factor causing the different annealing behavior in this study, since the texture fibers distributions are very similar. Two or more factors might affect the annealing process at the same time. Some factors could be more efficient than others at certain stage or stages
    corecore