1,271 research outputs found
Recommended from our members
lin-12 Notch functions in the adult nervous system of C. elegans
BACKGROUND: Notch signaling pathways are conserved across species and traditionally have been implicated in cell fate determination during embryonic development. Notch signaling components are also expressed postdevelopmentally in the brains of adult mice and Drosophila. Recent studies suggest that Notch signaling may play a role in the physiological, rather than developmental, regulation of neurons. Here, we investigate a new non-developmental role for Caenorhabditis elegans lin-12 Notch signaling in neurons regulating the spontaneous reversal rate during locomotion. RESULTS: The spontaneous reversal rate of C. elegans during normal locomotion is constant. Both lin-12 gain and loss of function mutant animals had significantly increased reversal rates compared to wild type controls. These defects were caused by lin-12 activity, because the loss of function defect could be rescued by a wild type lin-12 transgene. Furthermore, overexpression of lin-12 recapitulated the gain-of-function defect. Increasing or decreasing lin-12 activity in the postdevelopmental adult animal was sufficient to rapidly and reversibly increase reversals, thereby excluding a developmental role for lin-12. Although lin-12 is expressed in the vulval and somatic gonad lineages, we find that these tissues play no role in regulating reversal rates. In contrast, altering lin-12 activity specifically in the nervous system was sufficient to increase reversals. These behavioral changes require components of the canonical lin-12 signaling cascade, including the ligand lag-2 and the transcriptional effector lag-1. Finally, the C. elegans AMPA/kainate glutamate receptor homolog glr-1 shows strong genetic interactions with lin-12, suggesting that glr-1 and/or other glutamate gated channels may be targets of lin-12 regulation. CONCLUSION: Our results demonstrate a neuronal role for lin-12 Notch in C. elegans and suggest that lin-12 acutely regulates neuronal physiology to modulate animal behavior, without altering neuronal cell fate specification or neurite outgrowth. This is consistent with a role for Notch signaling in neurological disease with late onset symptoms
Platelet-Derived Growth Factor Receptor β Is Critical for Zebrafish Intersegmental Vessel Formation
Background: Platelet-derived growth factor receptor β (PDGFRβ) is a tyrosine kinase receptor known to affect vascular development. The zebrafish is an excellent model to study specific regulators of vascular development, yet the role of PDGF signaling has not been determined in early zebrafish embryos. Furthermore, vascular mural cells, in which PDGFRβ functions cell autonomously in other systems, have not been identified in zebrafish embryos younger than 72 hours post fertilization. Methodology/Principal Findings: In order to investigate the role of PDGFRβ in zebrafish vascular development, we cloned the highly conserved zebrafish homolog of PDGFRβ. We found that pdgfrβ is expressed in the hypochord, a developmental structure that is immediately dorsal to the dorsal aorta and potentially regulates blood vessel development in the zebrafish. Using a PDGFR tyrosine kinase inhibitor, a morpholino oligonucleotide specific to PDGFRβ, and a dominant negative PDGFRβ transgenic line, we found that PDGFRβ is necessary for angiogenesis of the intersegmental vessels. Significance/Conclusion: Our data provide the first evidence that PDGFRβ signaling is required for zebrafish angiogenesis. We propose a novel mechanism for zebrafish PDGFRβ signaling that regulates vascular angiogenesis in the absence of mural cells
Recommended from our members
RNF169 limits 53BP1 deposition at DSBs to stimulate single-strand annealing repair
Unrestrained 53BP1 activity at DNA double-strand breaks (DSBs) hampers DNA end resection and upsets DSB repair pathway choice. RNF169 acts as a molecular rheostat to limit 53BP1 deposition at DSBs, but how this fine balance translates to DSB repair control remains undefined. In striking contrast to 53BP1, ChIP analyses of AsiSI-induced DSBs unveiled that RNF169 exhibits robust accumulation at DNA end-proximal regions and preferentially targets resected, RPA-bound DSBs. Accordingly, we found that RNF169 promotes CtIP-dependent DSB resection and favors homology-mediated DSB repair, and further showed that RNF169 dose-dependently stimulates single-strand annealing repair, in part, by alleviating the 53BP1-imposed barrier to DSB end resection. Our results highlight the interplay of RNF169 with 53BP1 in fine-tuning choice of DSB repair pathways
Possible retardation effects of quark confinement on the meson spectrum
The reduced Bethe-Salpeter equation with scalar confinement and vector gluon
exchange is applied to quark-antiquark bound states. The so called intrinsic
flaw of Salpeter equation with static scalar confinement is investigated. The
notorious problem of narrow level spacings is found to be remedied by taking
into consideration the retardation effect of scalar confinement. Good fit for
the mass spectrum of both heavy and light quarkomium states is then obtained.Comment: 14 pages in LaTex for
WormBase: a multi-species resource for nematode biology and genomics
WormBase (http://www.wormbase.org/) is the central data repository for information about Caenorhabditis elegans and related nematodes. As a model organism database, WormBase extends beyond the genomic sequence, integrating experimental results with extensively annotated views of the genome. The WormBase Consortium continues to expand the biological scope and utility of WormBase with the inclusion of large-scale genomic analyses, through active data and literature curation, through new analysis and visualization tools, and through refinement of the user interface. Over the past year, the nearly complete genomic sequence and comparative analyses of the closely related species Caenorhabditis briggsae have been integrated into WormBase, including gene predictions, ortholog assignments and a new synteny viewer to display the relationships between the two species. Extensive site-wide refinement of the user interface now provides quick access to the most frequently accessed resources and a consistent browsing experience across the site. Unified single-page views now provide complete summaries of commonly accessed entries like genes. These advances continue to increase the utility of WormBase for C.elegans researchers, as well as for those researchers exploring problems in functional and comparative genomics in the context of a powerful genetic system
OSM-11 Facilitates LIN-12 Notch Signaling during Caenorhabditis elegans Vulval Development
Notch signaling is critical for cell fate decisions during development. Caenorhabditis elegans and vertebrate Notch ligands are more diverse than classical Drosophila Notch ligands, suggesting possible functional complexities. Here, we describe a developmental role in Notch signaling for OSM-11, which has been previously implicated in defecation and osmotic resistance in C. elegans. We find that complete loss of OSM-11 causes defects in vulval precursor cell (VPC) fate specification during vulval development consistent with decreased Notch signaling. OSM-11 is a secreted, diffusible protein that, like previously described C. elegans Delta, Serrate, and LAG-2 (DSL) ligands, can interact with the lineage defective-12 (LIN-12) Notch receptor extracellular domain. Additionally, OSM-11 and similar C. elegans proteins share a common motif with Notch ligands from other species in a sequence defined here as the Delta and OSM-11 (DOS) motif. osm-11 loss-of-function defects in vulval development are exacerbated by loss of other DOS-motif genes or by loss of the Notch ligand DSL-1, suggesting that DOS-motif and DSL proteins act together to activate Notch signaling in vivo. The mammalian DOS-motif protein Deltalike1 (DLK1) can substitute for OSM-11 in C. elegans development, suggesting that DOS-motif function is conserved across species. We hypothesize that C. elegans OSM-11 and homologous proteins act as coactivators for Notch receptors, allowing precise regulation of Notch receptor signaling in developmental programs in both vertebrates and invertebrates
The lncRNA landscape of breast cancer reveals a role for DSCAM-AS1 in breast cancer progression.
Molecular classification of cancers into subtypes has resulted in an advance in our understanding of tumour biology and treatment response across multiple tumour types. However, to date, cancer profiling has largely focused on protein-coding genes, which comprise <1% of the genome. Here we leverage a compendium of 58,648 long noncoding RNAs (lncRNAs) to subtype 947 breast cancer samples. We show that lncRNA-based profiling categorizes breast tumours by their known molecular subtypes in breast cancer. We identify a cohort of breast cancer-associated and oestrogen-regulated lncRNAs, and investigate the role of the top prioritized oestrogen receptor (ER)-regulated lncRNA, DSCAM-AS1. We demonstrate that DSCAM-AS1 mediates tumour progression and tamoxifen resistance and identify hnRNPL as an interacting protein involved in the mechanism of DSCAM-AS1 action. By highlighting the role of DSCAM-AS1 in breast cancer biology and treatment resistance, this study provides insight into the potential clinical implications of lncRNAs in breast cancer
QCD predictions for annihilation decays of P-wave quarkonia to next-to-leading order in
The decay rates of P-wave heavy quarkonia to light hadrons are presented to
leading order in and next-to-leading order in . They include
contributions from both the color-singlet component and the color-octet
component of quarkonia. Applying these results to charmonium and using measured
decay rates for the and by E760, we determine the two
nonperturbative decay matrix elements, and then predict the hadronic decay
rates of and , and the electromagnetic decay rates of
and . The obtained decay rates of and
are in agreement with the Crystal Ball result, and
also with the new measurement by BES. However, the results for
are dependent on the choice of renormalization scale.Comment: 10 pages Latex(5 figures included). We have corrected a numerical
error in Eq.(5) and Eq.(11
Large Possible retardation effects of quark confinement on the meson spectrum II
We present the results of a study of heavy-light-quark bound states in the
context of the reduced Bethe-Salpeter equation with relativistic vector and
scalar interactions. We find that satisfactory fits may also be obtained when
the retarded effect of the quark-antiquark interaction is concerned.Comment: 11 pages, RevTex, to appear in PR
A population of luminous accreting black holes with hidden mergers
Major galaxy mergers are thought to play an important part in fuelling the
growth of supermassive black holes. However, observational support for this
hypothesis is mixed, with some studies showing a correlation between merging
galaxies and luminous quasars and others showing no such association. Recent
observations have shown that a black hole is likely to become heavily obscured
behind merger-driven gas and dust, even in the early stages of the merger, when
the galaxies are well separated (5 to 40 kiloparsecs). Merger simulations
further suggest that such obscuration and black-hole accretion peaks in the
final merger stage, when the two galactic nuclei are closely separated (less
than 3 kiloparsecs). Resolving this final stage requires a combination of
high-spatial-resolution infrared imaging and high-sensitivity hard-X-ray
observations to detect highly obscured sources. However, large numbers of
obscured luminous accreting supermassive black holes have been recently
detected nearby (distances below 250 megaparsecs) in X-ray observations. Here
we report high-resolution infrared observations of hard-X-ray-selected black
holes and the discovery of obscured nuclear mergers, the parent populations of
supermassive-black-hole mergers. We find that obscured luminous black holes
(bolometric luminosity higher than 2x10^44 ergs per second) show a significant
(P<0.001) excess of late-stage nuclear mergers (17.6 per cent) compared to a
sample of inactive galaxies with matching stellar masses and star formation
rates (1.1 per cent), in agreement with theoretical predictions. Using
hydrodynamic simulations, we confirm that the excess of nuclear mergers is
indeed strongest for gas-rich major-merger hosts of obscured luminous black
holes in this final stage.Comment: To appear in the 8 November 2018 issue of Nature. This is the
authors' version of the wor
- …