17,191 research outputs found

    Community detection for networks with unipartite and bipartite structure

    Full text link
    Finding community structures in networks is important in network science, technology, and applications. To date, most algorithms that aim to find community structures only focus either on unipartite or bipartite networks. A unipartite network consists of one set of nodes and a bipartite network consists of two nonoverlapping sets of nodes with only links joining the nodes in different sets. However, a third type of network exists, defined here as the mixture network. Just like a bipartite network, a mixture network also consists of two sets of nodes, but some nodes may simultaneously belong to two sets, which breaks the nonoverlapping restriction of a bipartite network. The mixture network can be considered as a general case, with unipartite and bipartite networks viewed as its limiting cases. A mixture network can represent not only all the unipartite and bipartite networks, but also a wide range of real-world networks that cannot be properly represented as either unipartite or bipartite networks in fields such as biology and social science. Based on this observation, we first propose a probabilistic model that can find modules in unipartite, bipartite, and mixture networks in a unified framework based on the link community model for a unipartite undirected network [B Ball et al (2011 Phys. Rev. E 84 036103)]. We test our algorithm on synthetic networks (both overlapping and nonoverlapping communities) and apply it to two real-world networks: a southern women bipartite network and a human transcriptional regulatory mixture network. The results suggest that our model performs well for all three types of networks, is competitive with other algorithms for unipartite or bipartite networks, and is applicable to real-world networks.Comment: 27 pages, 8 figures. (http://iopscience.iop.org/1367-2630/16/9/093001

    Hadronic production of the PP-wave excited BcB_c-states (BcJ,L=1∗B_{cJ,L=1}^*)

    Full text link
    Adopting the complete αs4\alpha_s^4 approach of the perturbative QCD (pQCD) and updated parton distribution functions, we have estimated the hadronic production of PP-wave excited BcB_c-states (BcJ,L=1∗B_{cJ,L=1}^*). In the estimate, special care on the relation of the production amplitude to the derivative of wave function at origin of the potential model is payed. For experimental references, main uncertainties are discussed, and the total cross sections and the distributions of the production with reasonable cuts at the energies of Tevatron and LHC are computed and presented. The results show that PP-wave production may contribute to the BcB_c-meson production indirectly by a factor about 0.5 of the direct production, and with such a big cross section, it is worth further to study the possibility to observe the PP-wave production itself experimentally.Comment: 23 pages, 9 figures, to replace for revising the misprints ec

    The meson BcB_c annihilation to leptons and inclusive light hadrons

    Get PDF
    The annihilation of the BcB_c meson to leptons and inclusive light hadrons is analyzed in the framework of nonrelativistic QCD (NRQCD) factorization. We find that the decay mode, which escapes from the helicity suppression, contributes a sizable fraction width. According to the analysis, the branching ratio due to the contribution from the color-singlet component of the meson BcB_c can be of order (10^{-2}). We also estimate the contributions from the color-octet components. With the velocity scaling rule of NRQCD, we find that the color-octet contributions are sizable too, especially, in certain phase space of the annihilation they are greater than (or comparative to) the color-singlet component. A few observables relevant to the spectrum of charged lepton are suggested, that may be used as measurements on the color-octet and color-singlet components in the future BcB_c experiments. A typical long distance contribution in the annihilation is estimated too.Comment: 26 pages, 5 figures (6 eps-files), submitted to Phys. Rev.

    Higgs-Boson Two-Loop Contributions to Electric Dipole Moments in the MSSM

    Get PDF
    The complete set of Higgs-boson two-loop contributions to electric dipole moments of the electron and neutron is calculated in the minimal supersymmetric standard model. The electric dipole moments are induced by CP-violating trilinear couplings of the `CP-odd' and charged Higgs bosons to the scalar top and bottom quarks. Numerical estimates of the individual two-loop contributions to electric dipole moments are given.Comment: 12 pages, LaTeX, two encapsulated figure
    • …
    corecore