92 research outputs found

    Ab-initio calculations of spin tunneling through an indirect barrier

    Get PDF
    We use a fully relativistic layer Green's functions approach to investigate spin-dependent tunneling through a symmetric indirect band gap barrier like GaAs/AlAs/GaAs heterostructure along [100] direction. The method is based on Linear Muffin Tin Orbitals and it is within the Density Functional Theory (DFT) in the Local Density Approximation (LDA). We find that the results of our {\it ab-initio} calculations are in good agreement with the predictions of our previous empirical tight binding model [Phys. Rev. {\bf B}, 075313 (2006)]. In addition we show the kk_{||}-dependence of the spin polarization which we did not previously include in the model. The {\it ab-initio} calculations indicate a strong kk_{||}-dependence of the transmission and the spin polarization due to band non-parabolicity. A large window of 25-50 % spin polarization was found for a barrier of 8 AlAs monolayers at kk_{||} = 0.03 2π/a2\pi/a. Our calculations show clearly that the appearance of energy windows with significant spin polarization depends mostly on the location of transmission resonances and their corresponding zeros and not on the magnitude of the spin splitting in the barrier.Comment: 10 pages, 3 figure

    GW correlation effects on plutonium quasiparticle energies: changes in crystal-field splitting

    Full text link
    We present results for the electronic structure of plutonium by using a recently developed quasiparticle self-consistent GWGW method (\qsgw). We consider a paramagnetic solution without spin-orbit interaction as a function of volume for the face-centered cubic (fcc) unit cell. We span unit-cell volumes ranging from 10% greater than the equilibrium volume of the δ\delta phase to 90 % of the equivalent for the α\alpha phase of Pu. The self-consistent GWGW quasiparticle energies are compared to those obtained within the Local Density Approximation (LDA). The goal of the calculations is to understand systematic trends in the effects of electronic correlations on the quasiparticle energy bands of Pu as a function of the localization of the ff orbitals. We show that correlation effects narrow the ff bands in two significantly different ways. Besides the expected narrowing of individual ff bands (flatter dispersion), we find that an even more significant effect on the ff bands is a decrease in the crystal-field splitting of the different bands.Comment: 9 pages, 7 figures, 3 table

    Detection of the spin character of Fe(001) surface states by scanning tunneling microscopy: A theoretical proposal

    Full text link
    We consider the magnetic structure on the Fe(001) surface and theoretically study the scanning tunneling spectroscopy using a spin-polarized tip (SP-STM). We show that minority-spin surface states induce a strong bias dependence of the tunneling differential conductance which largely depends on the orientation of the magnetization in the SP-STM tip relative to the easy magnetization axis in the Fe(001) surface. We propose to use this effect in order to determine the spin character of the Fe(001) surface states. This technique can be applied also to other magnetic surfaces in which surface states are observed.Comment: 5 pages, 4 figure

    Spin tunneling through an indirect barrier

    Full text link
    Spin-dependent tunneling through an indirect bandgap barrier like the GaAs/AlAs/GaAs heterostructure along [001] direction is studied by the tight-binding method. The tunneling is characterized by the proportionality of the Dresselhaus Hamiltonians at Γ\Gamma and XX points in the barrier and by Fano resonances. The present results suggest that large spin polarization can be obtained for energy windows that exceed significantly the spin splitting. We also formulate two conditions that are necessary for the existence of energy windows with large polarization.Comment: 19 pages, 7 figure

    Incommensurate spin resonance in URu2Si2

    Full text link
    We focus on inelastic neutron scattering in URu2Si2URu_2Si_2 and argue that observed gap in the fermion spectrum naturally leads to the spin feature observed at energies ωres=46meV\omega_{res} = 4-6 meV at momenta at \bQ^* = (1\pm 0.4, 0,0). We discuss how spin features seen in URu2Si2URu_2Si_2 can indeed be thought of in terms of {\em spin resonance} that develops in HO state and is {\em not related} to superconducting transition at 1.5K. In our analysis we assume that the HO gap is due to a particle-hole condensate that connects nested parts of the Fermi surface with nesting vector Q\bf{Q}^* . Within this approach we can predicted the behavior of the spin susceptibility at \bQ^* and find it to be is strikingly similar to the phenomenology of resonance peaks in high-Tc_c and heavy fermion superconductors. The energy of the resonance peak scales with THOT_{HO} ωres4kBTHO\omega_{res} \simeq 4 k_BT_{HO}. We discuss observable consequences spin resonance will have on neutron scattering and local density of states.Comment: 8 pgaes latex, 4 fig

    Spin-orbit coupling in bulk GaAs

    Full text link
    We study the spin-orbit coupling in the whole Brillouin zone for GaAs using both the sp3sd5sp^3s^{\ast}d^5 and sp3ssp^3s^{\ast} nearest-neighbor tight-binding models. In the Γ\Gamma-valley, the spin splitting obtained is in good agreement with experimental data. We then further explicitly present the coefficients of the spin splitting in GaAs LL and XX valleys. These results are important to the realization of spintronic device and the investigation of spin dynamics far away from equilibrium.Comment: 8 pages, 3 figures, Physica E, in pres

    Tunneling Anisotropic Magnetoresistance in Co/AlOx/Au Tunnel Junctions

    Full text link
    We observe spin-valve-like effects in nano-scaled thermally evaporated Co/AlOx/Au tunnel junctions. The tunneling magnetoresistance is anisotropic and depends on the relative orientation of the magnetization direction of the Co electrode with respect to the current direction. We attribute this effect to a two-step magnetization reversal and an anisotropic density of states resulting from spin-orbit interaction. The results of this study points to future applications of novel spintronics devices involving only one ferromagnetic layer.Comment: 11 pages, 5 figures. Accpted for publishing on Nano Letters, 200

    Ab initio calculations with the dynamical vertex approximation

    Full text link
    We propose an approach for the ab initio calculation of materials with strong electronic correlations which is based on all local (fully irreducible) vertex corrections beyond the bare Coulomb interaction. It includes the so-called GW and dynamical mean field theory and important non-local correlations beyond, with a computational effort estimated to be still manageable.Comment: 8 pages, 6 figure

    Evidence for reversible control of magnetization in a ferromagnetic material via spin-orbit magnetic field

    Full text link
    Conventional computer electronics creates a dichotomy between how information is processed and how it is stored. Silicon chips process information by controlling the flow of charge through a network of logic gates. This information is then stored, most commonly, by encoding it in the orientation of magnetic domains of a computer hard disk. The key obstacle to a more intimate integration of magnetic materials into devices and circuit processing information is a lack of efficient means to control their magnetization. This is usually achieved with an external magnetic field or by the injection of spin-polarized currents. The latter can be significantly enhanced in materials whose ferromagnetic properties are mediated by charge carriers. Among these materials, conductors lacking spatial inversion symmetry couple charge currents to spin by intrinsic spin-orbit (SO) interactions, inducing nonequilibrium spin polarization tunable by local electric fields. Here we show that magnetization of a ferromagnet can be reversibly manipulated by the SO-induced polarization of carrier spins generated by unpolarized currents. Specifically, we demonstrate domain rotation and hysteretic switching of magnetization between two orthogonal easy axes in a model ferromagnetic semiconductor.Comment: 10 pages including supplemental materia

    Spin dynamics in semiconductors

    Full text link
    This article reviews the current status of spin dynamics in semiconductors which has achieved a lot of progress in the past years due to the fast growing field of semiconductor spintronics. The primary focus is the theoretical and experimental developments of spin relaxation and dephasing in both spin precession in time domain and spin diffusion and transport in spacial domain. A fully microscopic many-body investigation on spin dynamics based on the kinetic spin Bloch equation approach is reviewed comprehensively.Comment: a review article with 193 pages and 1103 references. To be published in Physics Reports
    corecore