16 research outputs found

    Action principle for continuous quantum measurement

    Get PDF
    We present a stochastic path integral formalism for continuous quantum measurement that enables the analysis of rare events using action methods. By doubling the quantum state space to a canonical phase space, we can write the joint probability density function of measurement outcomes and quantum state trajectories as a phase space path integral. Extremizing this action produces the most-likely paths with boundary conditions defined by preselected and postselected states as solutions to a set of ordinary differential equations. As an application, we analyze continuous qubit measurement in detail and examine the structure of a quantum jump in the Zeno measurement regime.Comment: Published version. 8 pages, 3 figures, movies available at http://youtu.be/OQ3PwkSKEUw and http://youtu.be/sTlV2amQtj

    Mapping the optimal route between two quantum states

    Get PDF
    A central feature of quantum mechanics is that a measurement is intrinsically probabilistic. As a result, continuously monitoring a quantum system will randomly perturb its natural unitary evolution. The ability to control a quantum system in the presence of these fluctuations is of increasing importance in quantum information processing and finds application in fields ranging from nuclear magnetic resonance to chemical synthesis. A detailed understanding of this stochastic evolution is essential for the development of optimized control methods. Here we reconstruct the individual quantum trajectories of a superconducting circuit that evolves in competition between continuous weak measurement and driven unitary evolution. By tracking individual trajectories that evolve between an arbitrary choice of initial and final states we can deduce the most probable path through quantum state space. These pre- and post-selected quantum trajectories also reveal the optimal detector signal in the form of a smooth time-continuous function that connects the desired boundary conditions. Our investigation reveals the rich interplay between measurement dynamics, typically associated with wave function collapse, and unitary evolution of the quantum state as described by the Schrodinger equation. These results and the underlying theory, based on a principle of least action, reveal the optimal route from initial to final states, and may enable new quantum control methods for state steering and information processing.Comment: 12 pages, 9 figure

    Linear Feedback Stabilization for a Continuously Monitored Qubit

    Get PDF
    In quantum mechanics, standard or strong measurement approaches generally result in the collapse of an ensemble of wavefunctions into a stochastic mixture of eigenstates. On the other hand, continuous or weak measurements have the propensity to dynamically control the evolution of quantum states over time, guiding the trajectory of the state into non-trivial superpositions and maintaining state purity. This kind of measurement-induced state steering is of great theoretical and experimental interest for the harnessing of quantum bits or qubits , which are the fundamental unit of the emerging quantum computer. We explore continuous measurement-based quantum state stabilization through linear feedback control for a single quantum bit. By applying a time-varying Rabi drive that includes a linear feedback term, we show that the fixed points of the continuous measurement may be relocated. Analytical derivations of It么 Stochastic Master Equations being ideal models, we employ them to derive the projected ensemble average while utilizing numerical simulations to characterize the stability of the set of possible fixed points, as well as their modified collapse time-scales. We include the effects of realistic experimental non-idealities, such as environmental energy relaxation, dephasing, time-delay, and inefficient measurement. Ultimately, we discuss potential experimental implementations from collaborating universities

    Rapid estimation of drifting parameters in continuously measured quantum systems

    No full text
    We investigate the determination of a Hamiltonian parameter in a quantum system undergoing continuous measurement. We demonstrate a computationally rapid yet statistically optimal method to estimate an unknown and possibly time-dependent parameter, where we maximize the likelihood of the observed stochastic readout. By dealing directly with the raw measurement record rather than the quantum state trajectories, the estimation can be performed while the data is being acquired, permitting continuous tracking of the parameter during slow drifts in real time. Furthermore, we incorporate realistic nonidealities, such as decoherence processes and measurement inefficiency. As an example, we focus on estimating the value of the Rabi frequency of a continuously measured qubit, and compare maximum likelihood estimation to a simpler fast Fourier transform. Using this example, we discuss how the quality of the estimation depends on both the strength and duration of the measurement; we also discuss the trade-off between the accuracy of the estimate and the sensitivity to drift as the estimation duration is varied.Comment: 11 pages, 6 figure
    corecore