2 research outputs found

    Attenuation of the haemodynamic responses to tracheal intubation with gabapentin, fentanyl and a combination of both: A randomised controlled trial

    No full text
    Background and Aims: We conducted a prospective, randomised, double-blind, controlled clinical trial to examine (1) whether a single preoperative dose of 800 mg gabapentin would be as effective as 2 μg/kg of intravenous (IV) fentanyl in blunting the haemodynamic response to tracheal intubation and (2) whether a combination of both would be more effective in this regard. Methods: Seventy-five patients (American Society of Anaesthesiologists physical status I), aged 20-50 years were allocated into one of three groups: 2 μg/kg IV fentanyl, 800 mg oral gabapentin or a combination of both. Gabapentin was administered 2 h and fentanyl 5 min before induction of anaesthesia, which was achieved with 5 mg/kg thiopentone, and tracheal intubation facilitated with 0.1 mg/kg vecuronium. Laryngoscopy lasting a maximum of 30 s was attempted 3 min after administration of the induction agents. Serial values of mean arterial pressure (MAP) and heart rate (HR) were compared among the three groups and with the respective preinduction measurements. Results : Patients receiving gabapentin 800 mg alone showed remarkable increases in HR and MAP in response to tracheal intubation (P < 0.05). The increases were similar for the other two regimens. These haemodynamic changes were lesser in patients receiving fentanyl and the combination of gabapentin and fentanyl. Conclusion: Oral gabapentin does not produce significant reduction in laryngoscopy and tracheal intubation induced sympathetic responses as compared to IV fentanyl or the combination of gabapentin and fentanyl

    Implementing an intensive care registry in India: Preliminary results of the case-mix program and an opportunity for quality improvement and research

    No full text
    Background: The epidemiology of critical illness in India is distinct from high-income countries. However, limited data exist on resource availability, staffing patterns, case-mix and outcomes from critical illness. Critical care registries, by enabling a continual evaluation of service provision, epidemiology, resource availability and quality, can bridge these gaps in information. In January 2019, we established the Indian Registry of IntenSive care to map capacity and describe case-mix and outcomes. In this report, we describe the implementation process, preliminary results, opportunities for improvement, challenges and future directions. Methods: All adult and paediatric ICUs in India were eligible to join if they committed to entering data for ICU admissions. Data are collected by a designated representative through the electronic data collection platform of the registry. IRIS hosts data on a secure cloud-based server and access to the data is restricted to designated personnel and is protected with standard firewall and a valid secure socket layer (SSL) certificate. Each participating ICU owns and has access to its own data. All participating units have access to de-identified network-wide aggregate data which enables benchmarking and comparison. Results: The registry currently includes 14 adult and 1 paediatric ICU in the network (232 adult ICU beds and 9 paediatric ICU beds). There have been 8721 patient encounters with a mean age of 56.9 (SD 18.9); 61.4% of patients were male and admissions to participating ICUs were predominantly unplanned (87.5%). At admission, most patients (61.5%) received antibiotics, 17.3% needed vasopressors, and 23.7% were mechanically ventilated. Mortality for the entire cohort was 9%. Data availability for demographics, clinical parameters, and indicators of admission severity was greater than 95%. Conclusions: IRIS represents a successful model for the continual evaluation of critical illness epidemiology in India and provides a framework for the deployment of multi-centre quality improvement and context-relevant clinical research
    corecore