127 research outputs found
Dynamic characteristic of spur gear with flexible support of gearbox
In this study, a nonlinear translation-torsion model of spur gear pair with flexible support of gearbox is proposed. The time-varying meshing stiffness, transmission error and backlash are considered in this model. Lagrangeâs equations are used for establishing the mathematic model. The numerical method is presented for solutions of nonlinear differential equations. The effect of rotating speed and support stiffness of gearbox is analyzed. The numerical results show that the flexibility of the support of gearbox has a significant effect on the amplitude-frequency characteristic of the spur gear pair at low rotating speeds. The response shows flexibility while the support stiffness is smaller than the bearings and rigidity while the support stiffness is larger than the bearings. The maximum deformation of the driving gear bearings under the flexible support is generally greater than the one under rigid support
Bosonic Super Liouville System: Lax Pair and Solution
We study the bosonic super Liouville system which is a statistical
transmutation of super Liouville system. Lax pair for the bosonic super
Liouville system is constructed using prolongation method, ensuring the Lax
integrability, and the solution to the equations of motion is also considered
via Leznov-Saveliev analysis.Comment: LaTeX, no figures, 11 page
Research on cemented artificial pillars to replace protective inter-block coal pillars and stope failure laws
Replacing protective inter-block coal pillars (PICPs) with cemented artificial pillars is proposed here to address low coal recovery rates. The use of cemented artificial pillars also reduces resource waste when PICPs are used in the short-wall block mining (SBM) process. A coal mine test area in northern Shaanxi, China, was employed as the study site. Artificial pillar replacement techniques were developed based on the layout characteristics of a typical SBM workface. High-strength cemented backfill materials for artificial pillars were manufactured using innovative material ratio testing, and the optimum ratios for backfill materials are discussed. A cusp catastrophe model of an artificial pillar was then developed and used to deduce the conditions and critical widths necessary to generate catastrophic instability of an artificial pillar. This theoretical analysis was validated using FLAC3D simulations. Using the test site conditions, the simulations revealed that when an artificial pillar had a width of 14Â m, the destruction of the pillar and associated stope was gradual and would not cause catastrophic instability. Field monitoring performed at the test site verified the theoretical analysis and numerical simulation results, confirming that it was feasible to replace PICPs with cemented artificial pillars
Study on the correlation of supplementation with L-citrulline on the gastrointestinal flora and semen antifreeze performance of ram
IntroductionCryopreservation of semen can give full play to the reproductive advantages of male animals. However, in actual production, due to the poor frost resistance of sheep semen and the low conception rate, the promotion of sheep frozen semen is greatly hindered. Therefore, it is urgent to improve the frost resistance of semen to improve the quality of frozen semen. At present, most studies on improving the quality of frozen semen are based on the improvement of semen dilutions, and few studies on improving the freezing resistance of ram semen by feeding functional amino acids.MethodsTherefore, 24 Turpan black rams were divided into high antifreeze group (HF) and a low antifreeze group (LF) Each of these groups was further randomly divided into control and experimental subgroups. The control subgroup was fed a basal diet, while the experimental subgroup received an additional 12 g/d of L-Cit supplementation based on the control group for a duration of 90 days.ResultsThe results showed that Following L-Cit supplementation, the experimental group demonstrated significantly elevated sperm density and VSL (Velocity of straight line), T-AOC, GSH-Px, and NO levels in fresh semen compared to the control group (P < 0.01). After thawing, the experimental group exhibited significantly higher levels of T-AOC, GSH-Px, and NO compared to the control group (P < 0.01). Additionally, the HFT group, after thawing frozen semen, displayed significantly higher HK1 protein expression compared to the control group. The number of spermatogonia, spermatocytes, and sperm cells in the HFT group was significantly higher than that in the HFC group. Moreover, 16S rRNA sequence analysis showed that Candidatus_Saccharimonas, Staphylococcus, Weissella, succinivbrionaceae_UcG_002, and Quinella were significantly enriched in the rumen of the HFT group, while Ureaplasma was significantly enriched in the HFC group. In the duodenum, Clostridiales_bacterium_Firm_14, Butyrivibrio, and Prevotellaceae_NK3831_group were significantly enriched in the HFT group, whereas Desulfovibrio and Quinella were significantly enriched in the HFC group.DiscussionUnder the conditions employed in this study, L-Cit supplementation was found to enhance the intestinal flora composition in rams, thereby improving semen quality, enhancing the antifreeze performance of semen, and promoting the development of testicular spermatogenic cells
Signature of coexistence of superconductivity and ferromagnetism in two-dimensional NbSe\u3csub\u3e2\u3c/sub\u3e triggered by surface molecular adsorption
Ferromagnetism is usually deemed incompatible with superconductivity. Consequently, the coexistence of superconductivity and ferromagnetism is usually observed only in elegantly designed multi-ingredient structures in which the two competing electronic states originate from separate structural components. Here we report the use of surface molecular adsorption to induce ferromagnetism in two-dimensional superconducting NbSe2, representing the freestanding case of the coexistence of superconductivity and ferromagnetism in one two-dimensional nanomaterial. Surface-structural modulation of the ultrathin superconducting NbSe2 by polar reductive hydrazine molecules triggers a slight elongation of the covalent NbâSe bond, which weakens the covalent interaction and enhances the ionicity of the tetravalent Nb with unpaired electrons, yielding ferromagnetic ordering. The induced ferromagnetic momentum couples with conduction electrons generating unique correlated effects of intrinsic negative magnetoresistance and the Kondo effect. We anticipate that the surface molecular adsorption will be a powerful tool to regulate spin ordering in the two-dimensional paradigm
Transcriptome analysis provides StMYBA1 gene that regulates potato anthocyanin biosynthesis by activating structural genes
Anthocyanin biosynthesis is affected by light, temperature, and other environmental factors. The regulation mode of light on anthocyanin synthesis in apple, pear, tomato and other species has been reported, while not clear in potato. In this study, potato RM-210 tubers whose peel will turn purple gradually after exposure to light were selected. Transcriptome analysis was performed on RM-210 tubers during anthocyanin accumulation. The expression of StMYBA1 gene continued to increase during the anthocyanin accumulation in RM-210 tubers. Moreover, co-expression cluster analysis of differentially expressed genes showed that the expression patterns of StMYBA1 gene were highly correlated with structural genes CHS and CHI. The promoter activity of StMYBA1 was significantly higher in light conditions, and StMYBA1 could activate the promoter activity of structural genes StCHS, StCHI, and StF3H. Further gene function analysis found that overexpression of StMYBA1 gene could promote anthocyanin accumulation and structural gene expression in potato leaves. These results demonstrated that StMYBA1 gene promoted potato anthocyanin biosynthesis by activating the expression of structural genes under light conditions. These findings provide a theoretical basis and genetic resources for the regulatory mechanism of potato anthocyanin synthesis
Patterns of pediatric and adolescent female genital inflammation in China: an eight-year retrospective study of 49,175 patients in China
BackgroundGenital inflammation is one of the most frequent clinical complaints among girls, which was easily overlooked by the general public. This study aimed to investigate the patterns and epidemiological characteristics of pediatric and adolescent female genital inflammation in China.MethodsA retrospective observational study (2011 to 2018) was conducted among all female patients under the age of 0â18âyears at the Department of Pediatric and Adolescent Gynecology of The Childrenâs Hospital, Zhejiang University School of Medicine. Data were collected from the electronic medical records. The abnormal vaginal discharge of patient was collected for microbiological investigation by bacterial and fungal culture. Descriptive analysis was conducted to evaluate the genital inflammation pattern and epidemiological characteristics, including age, season, and type of infected pathogens.ResultsA total of 49,175 patients met the eligibility criteria of genital inflammation and 16,320 patients later came to the hospital for follow-up over the study period. The number of first-visit increased gradually from 3,769 in 2011 to 10,155 in 2018. The peak age of the first visit was 0â6âyears old. Non-specific vulvovaginitis, lichen sclerosis, and labial adhesion were the top three genital inflammation. Among the top five potential common pathogens of vaginal infection, the prevalence of Haemophilus influenzae cases was the highest (31.42%, 203/646), followed by Streptococcus pyogenes (27.74%, 176/646), Candida albicans (14.09%, 91/646), Escherichia coli (8.51%, 55/646), and Staphylococcus aureus (6.35%, 41/636). The specific disease categories and pathogens of genital inflammation vary by age groups and season.ConclusionOur study summarizes the pattern of pediatric and adolescent female genital inflammation over an 8-year period in China, emphasizing the need for more public awareness, healthcare services and research in this field
Identification and characterization of bone/cartilage-associated signatures in common fibrotic skin diseases
Background: Fibrotic skin diseases are characterized by excessive accumulation of the extracellular matrix (ECM) and activation of fibroblasts, leading to a global healthcare burden. However, effective treatments of fibrotic skin diseases remain limited, and their pathological mechanisms require further investigation. This study aims to investigate the common biomarkers and therapeutic targets in two major fibrotic skin diseases, namely, keloid and systemic sclerosis (SSc), by bioinformatics analysis.Methods: The keloid (GSE92566) and SSc (GSE95065) datasets were downloaded from the Gene Expression Omnibus (GEO) database. Differentially expressed genes (DEGs) were identified, followed by functional enrichment analysis using Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG). We then constructed a proteinâprotein interaction (PPI) network for the identification of hub genes. We explored the possibility of further functional enrichment analysis of hub genes on the Metascape, GeneMANIA, and TissueNexus platforms. Transcription factor (TF)âhub gene and miRNAâhub gene networks were established using NetworkAnalyst. We fixed GSE90051 and GSE76855 as the external validation datasets. Studentâs t-test and receiver operating characteristic (ROC) curve were used for candidate hub gene validation. Hub gene expression was assessed in vitro by quantitative real-time PCR.Results: A total of 157 overlapping DEGs (ODEGs) were retrieved from the GSE92566 and GSE95065 datasets, and five hub genes (COL11A1, COL5A2, ASPN, COL10A1, and COMP) were identified and validated. Functional studies revealed that hub genes were predominantly enriched in bone/cartilage-related and collagen-related processes. FOXC1 and miR-335-5p were predicted to be master regulators at both transcriptional and postâtranscriptional levels.Conclusion: COL11A1, COL5A2, ASPN, COL10A1, and COMP may help understand the pathological mechanism of the major fibrotic skin diseases; moreover, FOXC1 and miR-355-5p could build a regulatory network in keloid and SSc
Monitoring the Process of Endostar-Induced Tumor Vascular Normalization by Non-contrast Intravoxel Incoherent Motion Diffusion-Weighted MRI
Tumor vascular normalization has been proposed as a new concept in anti-tumor angiogenesis, and the normalization window is considered as an opportunity to increase the effect of chemoradiotherapy. However, there is still a lack of a non-invasive method for monitoring the process of tumor vascular normalization. Intravoxel incoherent motion diffusion-weighted magnetic resonance imaging (IVIM DW-MRI) is an emerging approach which can effectively assess microperfusion in tumors, without the need for exogenous contrast agents. However, its role in monitoring tumor vascular normalization still needs further study. In this study, we established a tumor vascular normalization model of CT26 colon-carcinoma-bearing mice by means of Endostar treatment. We then employed IVIM DW-MRI and immunofluorescence to detect the process of tumor vascular normalization at different times after treatment. We found that the D* values of the Endostar group were significantly higher than those of the control group on days 4, 6, 8, and 10 after treatment, and the f values of the Endostar group were significantly higher than those of the control group on days 6 and 8. Furthermore, we confirmed through analysis of histologic parameters that Endostar treatment induced the CT26 tumor vascular normalization window starting from day 4 after treatment, and this window lasted for 6 days. Moreover, we found that D* and f values were well correlated with pericyte coverage (r = 0.469 and 0.504, respectively; P < 0.001, both) and relative perfusion (r = 0.424 and 0.457, respectively; P < 0.001, both). Taken together, our findings suggest that IVIM DW-MRI has the potential to serve as a non-invasive approach for monitoring Endostar-induced tumor vascular normalization
- âŠ