129 research outputs found
Photonic crystal cavity based optical induced transparency
Nowadays, information technology has been deeply integrated in our daily life. However, within its rapid development, it faces a serious bottleneck due to the prohibitive power consumption and limited transmission bandwidth of electrical interconnects. Silicon photonics introduces a potential solution for information technology based on optical communication. In this field, delay-bandwidth devices offer a high bandwidth optical interconnection and low power consumption for the next generation information communication technology. Through introducing the slow light effect, I can realise time domain control and store the light to achieve a new functional component, which is the optical buffer for optical information processing. The optical buffer allows us to control and store the light, using as the optical information process and transit. However, the current optical buffer devices are limited by high optical loss and the ability to produced tunable group delay of the light. In this thesis, I examine different configurations of the coupled photonic crystal resonator system and then introduce a novel tuneable delay line, based on photonic crystal cavity structures. Through the optical analog to electromagnetically induced transparency (EIT), an EIT-like transmission spectrum has been achieved in coupled photonic crystal cavities. By tuning the phase difference between two coupled resonators and resonance wavelength, I can achieve the desired analog conditions and reach to a maximum group delay of 360 ps. By adding thermal tuning pattern, I have demonstrated a tuning of the group delay of over 120 ps range at a low input power and a maximum delay of 300 ps group delay in coupled photonic crystal cavities system. All devices are with a footprint at only 200 μm², and with integrated compatibles as well. By employing a new vertical coupling technique, a record low loss 15 dB/ns is presented making this system very promising for practical optical information applications
Tunable optical buffer through an analogue to electromagnetically induced transparency in coupled photonic crystal cavities
We acknowledge funding from the European Research Council (ERC) under the European Union’s Seventh Framework Programme (FP7/2007- 2013) / ERC grant agreement n337508.Tunable on-chip optical delay has long been a key target for the research community, as it is the enabling technology behind delay lines, signal retiming and other applications vital to optical signal processing. To date, the field has been limited by high optical losses associated with slow light or delay structures. Here, we present a novel tunable delay line, based on a coupled cavity system exhibiting an electromagnetically induced transparency-like transmission spectrum, with record low loss, around 15 dB/ns. By tuning a single cavity, the delay of the complete structure can be tuned over 120 ps, with the maximum delay approaching 300 ps.PostprintPeer reviewe
Lightweight conductive graphene/thermoplastic polyurethane foams with ultrahigh compressibility for piezoresistive sensing
Lightweight conductive porous graphene/thermoplastic polyurethane (TPU) foams with ultrahigh compressibility were successfully fabricated by using the thermal induced phase separation (TISP) technique. The density and porosity of the foams were calculated to be about 0.11 g cm−3 and 90% owing to the porous structure. Compared with pure TPU foams, the addition of graphene could effectively increase the thickness of the cell wall and hinder the formation of small holes, leading to a robust porous structure with excellent compression property. Meanwhile, the cell walls with small holes and a dendritic structure were observed due to the flexibility of graphene, endowing the foam with special positive piezoresistive behaviors and peculiar response patterns with a deflection point during the cyclic compression. This could effectively enhance the identifiability of external compression strain when used as piezoresistive sensors. In addition, larger compression sensitivity was achieved at a higher compression rate. Due to high porosity and good elasticity of TPU, the conductive foams demonstrated good compressibility and stable piezoresistive sensing signals at a strain of up to 90%. During the cyclic piezoresistive sensing test under different compression strains, the conductive foam exhibited good recoverability and reproducibility after the stabilization of cyclic loading. All these suggest that the fabricated conductive foam possesses great potential to be used as lightweight, flexible, highly sensitive, and stable piezoresistive sensors
Wavelength stability in a hybrid photonic crystal laser through controlled nonlinear absorptive heating in the reflector
The need for miniaturized, fully integrated semiconductor lasers has stimulated significant research efforts into realizing unconventional configurations that can meet the performance requirements of a large spectrum of applications, ranging from communication systems to sensing. We demonstrate a hybrid, silicon photonics-compatible photonic crystal (PhC) laser architecture that can be used to implement cost-effective, high-capacity light sources, with high side-mode suppression ratio and milliwatt output output powers. The emitted wavelength is set and controlled by a silicon PhC cavity-based reflective filter with the gain provided by a III–V-based reflective semiconductor optical amplifier (RSOA). The high power density in the laser cavity results in a significant enhancement of the nonlinear absorption in silicon in the high Q-factor PhC resonator. The heat generated in this manner creates a tuning effect in the wavelength-selective element, which can be used to offset external temperature fluctuations without the use of active cooling. Our approach is fully compatible with existing fabrication and integration technologies, providing a practical route to integrated lasing in wavelength-sensitive schemes
Semiconducting metal oxide photonic crystal plasmonic photocatalysts
Plasmonic photocatalysis has facilitated rapid progress in enhancing photocatalytic efficiency under visible light irradiation. Poor visible‐light‐responsive photocatalytic materials and low photocatalytic efficiency remain major challenges. Plasmonic metal–semiconductor heterostructures where both the metal and semiconductor are photosensitive are promising for light harvesting catalysis, as both components can absorb solar light. Efficiency of photon capture can be further improved by structuring the catalyst as a photonic crystal. Here, the synthesis of photonic crystal plasmonic photocatalyst materials using Au nanoparticle‐functionalized inverse opal (IO) photonic crystals is reported. A catalyst prepared using a visible‐light‐responsive semiconductor (V2O5) displayed over an order of magnitude increase in reaction rate under green light excitation (λ = 532 nm) compared to no illumination. The superior performance of Au‐V2O5 IO is attributed to spectral overlap of the electronic bandgap, localized surface plasmon resonance, and incident light source. For the Au‐TiO2 catalyst, despite coupling of the LSPR and excitation source at λ = 532 nm, this is not as effective in enhancing photocatalytic activity compared to carrying out the reaction under broadband visible light, which is attributed to improved photon adsorption in the visible by the presence of a photonic bandgap, and exploiting slow light in the photonic crystal to enhance photon absorption to create this synergistic type of photocatalyst
- …