28 research outputs found

    l-Isoleucine Administration Alleviates Rotavirus Infection and Immune Response in the Weaned Piglet Model

    Get PDF
    Rotavirus (RV) infection is one of the main pathogenic causes of severe gastroenteritis and diarrhea in infants and young animals. This study aimed to determine how dietary l-isoleucine supplementation improves the growth performance and immune response in weaned piglets with RV infection. In cell culture experiment, after IPEC-J2 and 3D4/31 cells were treated by 8 mM l-isoleucine for 24 h, the gene expressions of β-defensins and pattern recognition receptors (PRR) signaling pathway were significantly increased. Then, in the in vivo experiment, 28 crossbred weaned pigs were randomly divided into two groups fed with basal diet with or without l-isoleucine for 18 days. On the 15th day, the oral RV gavage was executed in the half of piglets. Average daily feed intake and gain of piglets were impaired by RV infection (P < 0.05). RV infection also induced severe diarrhea and the increasing serum urea nitrogen concentration (P < 0.05), and decreased CD4+ lymphocyte and CD4+/CD8+ ratio of peripheral blood (P < 0.05). However, dietary l-isoleucine supplementation attenuated diarrhea and decreasing growth performance (P < 0.05), decreased the NSP4 concentration in ileal mucosa, and enhanced the productions and/or expressions of immunoglobulins, RV antibody, cytokines, and β-defensins in serum, ileum, and/or mesenteric lymph nodes of weaned piglets (P < 0.05), which could be relative with activation of PRR signaling pathway and the related signaling pathway (P < 0.05) in the weaned pigs orally infused by RV. These results indicate that dietary l-isoleucine could improve the growth performance and immune function, which could be derived from l-isoleucine treatment improving the innate and adaptive immune responses via activation of PRR signaling pathway in RV-infected piglets. It is possible that l-isoleucine can be used in the therapy of RV infection in infants and young animals

    Search for light dark matter from atmosphere in PandaX-4T

    Full text link
    We report a search for light dark matter produced through the cascading decay of η\eta mesons, which are created as a result of inelastic collisions between cosmic rays and Earth's atmosphere. We introduce a new and general framework, publicly accessible, designed to address boosted dark matter specifically, with which a full and dedicated simulation including both elastic and quasi-elastic processes of Earth attenuation effect on the dark matter particles arriving at the detector is performed. In the PandaX-4T commissioning data of 0.63 tonne⋅\cdotyear exposure, no significant excess over background is observed. The first constraints on the interaction between light dark matter generated in the atmosphere and nucleus through a light scalar mediator are obtained. The lowest excluded cross-section is set at 5.9×10−37cm25.9 \times 10^{-37}{\rm cm^2} for dark matter mass of 0.10.1 MeV/c2/c^2 and mediator mass of 300 MeV/c2/c^2. The lowest upper limit of η\eta to dark matter decay branching ratio is 1.6×10−71.6 \times 10^{-7}

    A Search for Light Fermionic Dark Matter Absorption on Electrons in PandaX-4T

    Full text link
    We report a search on a sub-MeV fermionic dark matter absorbed by electrons with an outgoing active neutrino using the 0.63 tonne-year exposure collected by PandaX-4T liquid xenon experiment. No significant signals are observed over the expected background. The data are interpreted into limits to the effective couplings between such dark matter and electrons. For axial-vector or vector interactions, our sensitivity is competitive in comparison to existing astrophysical bounds on the decay of such dark matter into photon final states. In particular, we present the first direct detection limits for an axial-vector (vector) interaction which are the strongest in the mass range from 25 to 45 (35 to 50) keV/c2^2

    Phylogenetic Diversity of Bacteria in an Earth-Cave in Guizhou Province, Southwest of China

    No full text
    The objective of this study was to analyze the phylogenetic composition of bacterial community in the soil of an earth-cave (Niu Cave) using a culture-independent molecular approach. 16S rRNA genes were amplified directly from soil DNA with universally conserved and Bacteria-specific rRNA gene primers and cloned. The clone library was screened by restriction fragment length polymorphism (RFLP), and representative rRNA gene sequences were determined. A total of 115 bacterial sequence types were found in 190 analyzed clones. Phylogenetic sequence analyses revealed novel 16S rRNA gene sequence types and a high diversity of putative bacterial community. Members of these bacteria included Proteobacteria (42.6%), Acidobacteria (18.6%), Planctomycetes (9.0%), Chloroflexi (Green nonsulfur bacteria, 7.5%), Bacteroidetes (2.1%), Gemmatimonadetes (2.7%), Nitrospirae (8.0%), Actinobacteria (High G+C Gram-positive bacteria, 6.4%) and candidate divisions (including the OP3, GN08, and SBR1093, 3.2%). Thirty-five clones were affiliated with bacteria that were related to nitrogen, sulfur, iron or manganese cycles. The comparison of the present data with the data obtained previously from caves based on 16S rRNA gene analysis revealed similarities in the bacterial community components, especially in the high abundance of Proteobacteria and Acidobacteria. Furthermore, this study provided the novel evidence for presence of Gemmatimonadetes, Nitrosomonadales, Oceanospirillales, and Rubrobacterales in a karstic hypogean environment

    Phylogenetic Diversity of Bacteria in an Earth-Cave in Guizhou Province, Southwest of China

    No full text
    The objective of this study was to analyze the phylogenetic composition of bacterial community in the soil of an earth-cave (Niu Cave) using a culture-independent molecular approach. 16S rRNA genes were amplified directly from soil DNA with universally conserved and Bacteria-specific rRNA gene primers and cloned. The clone library was screened by restriction fragment length polymorphism (RFLP), and representative rRNA gene sequences were determined. A total of 115 bacterial sequence types were found in 190 analyzed clones. Phylogenetic sequence analyses revealed novel 16S rRNA gene sequence types and a high diversity of putative bacterial community. Members of these bacteria included Proteobacteria (42.6%), Acidobacteria (18.6%), Planctomycetes (9.0%), Chloroflexi (Green nonsulfur bacteria, 7.5%), Bacteroidetes (2.1%), Gemmatimonadetes (2.7%), Nitrospirae (8.0%), Actinobacteria (High G+C Gram-positive bacteria, 6.4%) and candidate divisions (including the OP3, GN08, and SBR1093, 3.2%). Thirty-five clones were affiliated with bacteria that were related to nitrogen, sulfur, iron or manganese cycles. The comparison of the present data with the data obtained previously from caves based on 16S rRNA gene analysis revealed similarities in the bacterial community components, especially in the high abundance of Proteobacteria and Acidobacteria. Furthermore, this study provided the novel evidence for presence of Gemmatimonadetes, Nitrosomonadales, Oceanospirillales, and Rubrobacterales in a karstic hypogean environment
    corecore