185 research outputs found

    Sparse Array Enabled Near-Field Communications: Beam Pattern Analysis and Hybrid Beamforming Design

    Full text link
    Extremely large-scale array (XL-array) has emerged as a promising technology to enable near-field communications for achieving enhanced spectrum efficiency and spatial resolution, by drastically increasing the number of antennas. However, this also inevitably incurs higher hardware and energy cost, which may not be affordable in future wireless systems. To address this issue, we propose in this paper to exploit two types of sparse arrays (SAs) for enabling near-field communications. Specifically, we first consider the linear sparse array (LSA) and characterize its near-field beam pattern. It is shown that despite the achieved beam-focusing gain, the LSA introduces several undesired grating-lobes, which have comparable beam power with the main-lobe and are focused on specific regions. An efficient hybrid beamforming design is then proposed for the LSA to deal with the potential strong inter-user interference (IUI). Next, we consider another form of SA, called extended coprime array (ECA), which is composed of two LSA subarrays with different (coprime) inter-antenna spacing. By characterizing the ECA near-field beam pattern, we show that compared with the LSA with the same array sparsity, the ECA can greatly suppress the beam power of near-field grating-lobes thanks to the offset effect of the two subarrays, albeit with a larger number of grating-lobes. This thus motivates us to propose a customized two-phase hybrid beamforming design for the ECA. Finally, numerical results are presented to demonstrate the rate performance gain of the proposed two SAs over the conventional uniform linear array (ULA).Comment: In this paper, we propose to exploit sparse arrays for enabling near-field communications and characterize its unique beam pattern for facilitating its hybrid beamforming desig

    Learning Transferable Self-attentive Representations for Action Recognition in Untrimmed Videos with Weak Supervision

    Full text link
    Action recognition in videos has attracted a lot of attention in the past decade. In order to learn robust models, previous methods usually assume videos are trimmed as short sequences and require ground-truth annotations of each video frame/sequence, which is quite costly and time-consuming. In this paper, given only video-level annotations, we propose a novel weakly supervised framework to simultaneously locate action frames as well as recognize actions in untrimmed videos. Our proposed framework consists of two major components. First, for action frame localization, we take advantage of the self-attention mechanism to weight each frame, such that the influence of background frames can be effectively eliminated. Second, considering that there are trimmed videos publicly available and also they contain useful information to leverage, we present an additional module to transfer the knowledge from trimmed videos for improving the classification performance in untrimmed ones. Extensive experiments are conducted on two benchmark datasets (i.e., THUMOS14 and ActivityNet1.3), and experimental results clearly corroborate the efficacy of our method

    Resfusion: Prior Residual Noise embedded Denoising Diffusion Probabilistic Models

    Full text link
    Recently, Denoising Diffusion Probabilistic Models have been widely used in image segmentation, by generating segmentation masks conditioned on the input image. However, previous works can not seamlessly integrate existing end-to-end models with denoising diffusion models. Existing research can only select acceleration steps based on experience rather than calculating them specifically. Moreover, most methods are limited to small models and small-scale datasets, unable to generalize to general datasets and a wider range of tasks. Therefore, we propose Resfusion with a novel resnoise-diffusion process, which gradually generates segmentation masks or any type of target image, seamlessly integrating state-of-the-art end-to-end models and denoising diffusion models. Resfusion bridges the discrepancy between the likelihood output and the ground truth output through a Markov process. Through the novel smooth equivalence transformation in resnoise-diffusion process, we determine the optimal acceleration step. Experimental results demonstrate that Resfusion combines the capabilities of existing end-to-end models and denoising diffusion models, further enhancing performance and achieving outstanding results. Moreover, Resfusion is not limited to segmentation tasks, it can easily generalize to any general tasks of image generation and exhibit strong competitiveness

    Not All Weights Are Created Equal: Enhancing Energy Efficiency in On-Device Streaming Speech Recognition

    Full text link
    Power consumption plays an important role in on-device streaming speech recognition, as it has a direct impact on the user experience. This study delves into how weight parameters in speech recognition models influence the overall power consumption of these models. We discovered that the impact of weight parameters on power consumption varies, influenced by factors including how often they are invoked and their placement in memory. Armed with this insight, we developed design guidelines aimed at optimizing on-device speech recognition models. These guidelines focus on minimizing power use without substantially affecting accuracy. Our method, which employs targeted compression based on the varying sensitivities of weight parameters, demonstrates superior performance compared to state-of-the-art compression methods. It achieves a reduction in energy usage of up to 47% while maintaining similar model accuracy and improving the real-time factor

    LLM-QAT: Data-Free Quantization Aware Training for Large Language Models

    Full text link
    Several post-training quantization methods have been applied to large language models (LLMs), and have been shown to perform well down to 8-bits. We find that these methods break down at lower bit precision, and investigate quantization aware training for LLMs (LLM-QAT) to push quantization levels even further. We propose a data-free distillation method that leverages generations produced by the pre-trained model, which better preserves the original output distribution and allows quantizing any generative model independent of its training data, similar to post-training quantization methods. In addition to quantizing weights and activations, we also quantize the KV cache, which is critical for increasing throughput and support long sequence dependencies at current model sizes. We experiment with LLaMA models of sizes 7B, 13B, and 30B, at quantization levels down to 4-bits. We observe large improvements over training-free methods, especially in the low-bit settings
    corecore