48 research outputs found

    Metabolic Profiling Study of Yang Deficiency Syndrome in Hepatocellular Carcinoma by H

    Get PDF
    This study proposes a 1H NMR-based metabonomic approach to explore the biochemical characteristics of Yang deficiency syndrome in hepatocellular carcinoma (HCC) based on serum metabolic profiling. Serum samples from 21 cases of Yang deficiency syndrome HCC patients (YDS-HCC) and 21 cases of non-Yang deficiency syndrome HCC patients (NYDS-HCC) were analyzed using 1H NMR spectroscopy and partial least squares discriminant analysis (PLS-DA) was applied to visualize the variation patterns in metabolic profiling of sera from different groups. The differential metabolites were identified and the biochemical characteristics were analyzed. We found that the intensities of six metabolites (LDL/VLDL, isoleucine, lactate, lipids, choline, and glucose/sugars) in serum of Yang deficiency syndrome patients were lower than those of non-Yang deficiency syndrome patients. It implies that multiple metabolisms, mainly including lipid, amino acid, and energy metabolisms, are unbalanced or weakened in Yang deficiency syndrome patients with HCC. The decreased intensities of metabolites including LDL/VLDL, isoleucine, lactate, lipids, choline, and glucose/sugars in serum may be the distinctive metabolic variations of Yang deficiency syndrome patients with HCC. And these metabolites may be potential biomarkers for diagnosis of Yang deficiency syndrome in HCC

    Ginsenoside Rh1 Improves the Effect of Dexamethasone on Autoantibodies Production and Lymphoproliferation in MRL/lpr Mice

    Get PDF
    Ginsenoside Rh1 is able to upregulate glucocorticoid receptor (GR) level, suggesting Rh1 may improve glucocorticoid efficacy in hormone-dependent diseases. Therefore, we investigated whether Rh1 could enhance the effect of dexamethasone (Dex) in the treatment of MRL/lpr mice. MRL/lpr mice were treated with vehicle, Dex, Rh1, or Dex + Rh1 for 4 weeks. Dex significantly reduced the proteinuria and anti-dsDNA and anti-ANA autoantibodies. The levels of proteinuria and anti-dsDNA and anti-ANA autoantibodies were further decreased in Dex + Rh1 group. Dex, Rh1, or Dex + Rh1 did not alter the proportion of CD4+ splenic lymphocytes, whereas the proportion of CD8+ splenic lymphocytes was significantly increased in Dex and Dex + Rh1 groups. Dex + Rh1 significantly decreased the ratio of CD4+/CD8+ splenic lymphocytes compared with control. Con A-induced CD4+ splenic lymphocytes proliferation was increased in Dex-treated mice and was inhibited in Dex + Rh1-treated mice. Th1 cytokine IFN-γ mRNA was suppressed and Th2 cytokine IL-4 mRNA was increased by Dex. The effect of Dex on IFN-γ and IL-4 mRNA was enhanced by Rh1. In conclusion, our data suggest that Rh1 may enhance the effect of Dex in the treatment of MRL/lpr mice through regulating CD4+ T cells activation and Th1/Th2 balance

    Treatment of Huge Hepatocellular Carcinoma Using Cinobufacini Injection in Transarterial Chemoembolization: A Retrospective Study

    Get PDF
    The aim of this study is to examine the safety and efficacy of Cinobufacini injection in transarterial chemoembolization (TACE) for treatment of huge hepatocellular carcinoma (HCC). Clinical data of 56 consecutive patients with HCC larger than 10 cm who had been treated with TACE between December 2010 and August 2014 were retrospectively analyzed. Among these patients, 31 belonged to the Cinobufacini group and 25 belonged to the epirubicin group. The clinical efficacy, survival time, and adverse events in patients in the two groups were compared. The objective response rate in the Cinobufacini group was significantly higher than that in the epirubicin group (53.6% versus 23.1%, = 0.022). The median survival time (10.6 versus 14.1 months, 2 = 0.092, = 0.762) and the median time to progression (4.9 versus 5.7 months, 2 = 0.097, = 0.756) were similar between the groups. The incidence rate of adverse events was lower in the Cinobufacini group than in the epirubicin group ( < 0.05). The short-term clinical efficacy of Cinobufacini is better than that of epirubicin in TACE for treating huge HCC, while their long-term clinical efficacy is similar. However, lower incidence of adverse events was noted in TACE using Cinobufacini rather than epirubicin

    Reduced MLH3 Expression in the Syndrome of Gan-Shen Yin Deficiency in Patients with Different Diseases

    Get PDF
    Traditional Chinese medicine formulates treatment according to body constitution (BC) differentiation. Different constitutions have specific metabolic characteristics and different susceptibility to certain diseases. This study aimed to assess the characteristic genes of gan-shen Yin deficiency constitution in different diseases. Fifty primary liver cancer (PLC) patients, 94 hypertension (HBP) patients, and 100 diabetes mellitus (DM) patients were enrolled and classified into gan-shen Yin deficiency group and non-gan-shen Yin deficiency group according to the body constitution questionnaire to assess the clinical manifestation of patients. The mRNA expressions of 17 genes in PLC patients with gan-shen Yin deficiency were different from those without gan-shen Yin deficiency. However, considering all patients with PLC, HBP, and DM, only MLH3 was significantly lower in gan-shen Yin deficiency group than that in non-gen-shen Yin deficiency. By ROC analysis, the relationship between MLH3 and gan-shen Yin deficiency constitution was confirmed. Treatment of MLH3 (−/− and −/+) mice with Liuweidihuang wan, classical prescriptions for Yin deficiency, partly ameliorates the body constitution of Yin deficiency in MLH3 (−/+) mice, but not in MLH3 (−/−) mice. MLH3 might be one of material bases of gan-shen Yin deficiency constitution

    Enhanced Transgene Expression from Recombinant Single-Stranded D-Sequence-Substituted Adeno-Associated Virus Vectors in Human Cell Lines In Vitro and in Murine Hepatocytes In Vivo

    Get PDF
    ABSTRACT We have previously reported that the removal of a 20-nucleotide sequence, termed the D sequence, from both ends of the inverted terminal repeats (ITRs) in the adeno-associated virus serotype 2 (AAV2) genome significantly impairs rescue, replication, and encapsidation of the viral genomes (X. S. Wang, S. Ponnazhagan, and A. Srivastava, J Mol Biol 250:573–580, 1995; X. S. Wang, S. Ponnazhagan, and A. Srivastava, J Virol 70:1668–1677, 1996). Here we describe that replacement of only one D sequence in either ITR restores each of these functions, but DNA strands of only single polarity are encapsidated in mature progeny virions. Since most commonly used recombinant AAV vectors contain a single-stranded DNA (ssDNA), which is transcriptionally inactive, efficient transgene expression from AAV vectors is dependent upon viral second-strand DNA synthesis. We have also identified a transcription suppressor sequence in one of the D sequences, which shares homology with the binding site for the cellular NF-κB-repressing factor (NRF). The removal of this D sequence from, and replacement with a sequence containing putative binding sites for transcription factors in, single-stranded AAV (ssAAV) vectors significantly augments transgene expression both in human cell lines in vitro and in murine hepatocytes in vivo . The development of these genome-modified ssAAV vectors has implications not only for the basic biology of AAV but also for the optimal use of these vectors in human gene therapy. IMPORTANCE The results of the studies described here not only have provided novel insights into some of the critical steps in the life cycle of a human virus, the adeno-associated virus (AAV), that causes no known disease but have also led to the development of novel recombinant AAV vectors which are more efficient in allowing increased levels of gene expression. Thus, these studies have significant implications for the potential use of these novel AAV vectors in human gene therapy

    Enhancing HCC Treatment: innovatively combining HDAC2 inhibitor with PD-1/PD-L1 inhibition

    No full text
    Abstract Hepatocellular carcinoma (HCC) is a malignancy with high morbidity and mortality but lacks effective treatments thus far. Although the emergence of immune checkpoint inhibitors in recent years has shed light on the treatment of HCC, a considerable number of patients are still unable to achieve durable and ideal clinical benefits. Therefore, refining the combination of immune checkpoint inhibitors (ICIs) to enhance the therapeutic effect has become a global research hotspot. Several histone deacetylase 2 inhibitors have shown advantages in ICIs in many solid cancers, except for HCC. Additionally, the latest evidence has shown that histone deacetylase 2 inhibition can regulate PD-L1 acetylation, thereby blocking the nuclear translocation of PD-L1 and consequently enhancing the efficacy of PD-1/PD-L1 inhibitors and improving anti-cancer immunity. Moreover, our team has recently discovered a novel HDAC2 inhibitor (HDAC2i), valetric acid (VA), that possesses great potential in HCC treatment as a monotherapy. Thus, a new combination strategy, combining HDAC2 inhibitors with ICIs, has emerged with significant development value. This perspective aims to ignite enthusiasm for exploring the application of ideal HDAC2 inhibitors with solid anti-tumor efficacy in combination with immunotherapy for HCC
    corecore