1 research outputs found

    Calibration of Discrete Element Simulation Parameters for Powder Screw Conveying

    No full text
    In order to obtain the accurate contact parameters in the simulation process of powder screw conveying, this paper took wheat flour as an example, based on the discrete element JKR (Johnson-Kendall-Roberts) contact model, and directly calibrated the simulation contact parameters in the process of screw conveying in response to the mass flow rate of wheat flour. Firstly, the simulation density of wheat flour particles was calibrated, and the simulation density of wheat flour particles was 1320 kg/m. Then, Plackett-Burman experiment was used to screen out the parameters that had significant influence on the mass flow rate: surface energy JKR, coefficient of static friction between wheat flour and wheat flour, and the coefficient of static friction between wheat flour and stainless steel. The second-order regression model of mass flow rate and significance parameters was established and optimized based on Box-Behnken experiment, and the optimal combination of significance parameters: JKR was obtained to be 0.364; the static friction coefficient of wheat flour to wheat flour was 0.437; and the static friction coefficient of wheat flour to stainless steel was 0.609. Finally, the calibration parameters were used for simulation. By comparing the mass flow rate of simulation and experiment, the relative error of the two was 1.37%. The simulation and experiment flow rate values at different rotating speeds (60 r/min, 80 r/min, 100 r/min, 120 r/min, and 140 r/min) were further compared, and the errors were all within 3%. The method of directly calibrating the simulation contact parameters through the screw conveying process can improve the accuracy of screw conveying simulation, and providing a method and basis for powder contact parameters calibration and screw conveying simulation of wheat flour
    corecore