49 research outputs found

    ORY-1001 Suppresses Cell Growth and Induces Apoptosis in Lung Cancer Through Triggering HK2 Mediated Warburg Effect

    Get PDF
    ORY-1001, an inhibitor of covalent lysine (K)-specific demethylase 1A (KDM1A), has been used as a therapy for the treatment of acute leukemia. However, the underlying mechanisms of anticancer are still not fully elucidated. Here, we report that KDM1A is highly expressed in lung cancers, where it appears to drive aggressive growth. Furthermore, lung cancer patients with higher KDM1A levels have worse survival outcomes than patients with lower KDM1A levels. Interestingly, ORY-1001significantly inhibited the cell proliferation, colony formation, cell cycle, and induced apoptosis, by regulating the Warburg effect through controlling Hexokinases 2 (HK2) expression. In summary, these results indicate that ORY-1001 could inhibit the growth of lung cancer cells via regulating the Warburg effect by controlling HK2

    Control of a Tilting Hexacopter under Wind Disturbance

    No full text
    Multicopters are well suited for executing fast maneuvers with high velocity, but they are still affected by the external atmospheric environment because attitude and position cannot be independently controlled. In this paper, we present a novel hexacopter which improves the wind resistance and strong coupling between attitude control and position control. The copter is designed such that the rotor sections can tilt around their respective arm axes. We present the aerodynamic methods to analyze the system dynamics model in windy environments. The entire system is decomposed into six loops based on the model, and the presented flight controller uses the ADRC method to consider both the attitude and the position. The controller introduces the extended state observer to estimate the white noise and wind disturbance. We use the nonlinear state error feedback law to control the output with disturbance compensation. Finally, we linearize the control allocation matrix that the controllers output directly mapped to the rotor velocities and tilting angles. The new theoretical results are thoroughly validated through comparative experiments

    A Preliminary Study of Laser Directional Solidification for Potential Use in the Repair of Damaged Aviation Turbine Blades

    Get PDF
    To achieve directional solidification repair of damaged aviation turbine blades, the directional growth repair layer was prepared using a Nd:YAG laser on the surface of superalloy DZ-22. A scanning electron microscope (SEM) was used to observe the microstructure. The element distribution was analyzed and the microhardness of the sample was measured. The results showed that primary dendrite size was proportional to the current and the pulse-width, and inversely proportional to the scanning speed. No obvious macrosegregation of the repair zone was evident. The zone exhibited a finer microstructure than the substrate and had a smaller columnar crystal size, which was approximately two orders of magnitude smaller than the substrate. The micro-segregation between the centers and the edges of the dendrites and in between adjacent dendrites and a decrease in microhardness from the repair zone (455 HV) to the substrate also were observed

    ARSS: A Novel Aerial Robot Performs Tree Pruning Tasks

    No full text
    In this article, we present a novel aerial robot with a suspended saw (ARSS) for pruning trees that are close to electric power lines. The Robot’s movement process includes free flight and aerial pruning. We first established a dynamic model and designed a controller based on the Active Disturbance Rejection Control (ADRC) on the model. Aiming at the problem of saw swing and residual oscillation during the free flight movement, we adopt the linear state feedback to design a swing angle controller. Finally, we use Matlab/Simulink and CoppeliaSim for simulation, and the simulation results verify the effectiveness and feasibility of the controller

    Characterization and Catalytic Activity of Mn-Co/TiO2 Catalysts for NO Oxidation to NO2 at Low Temperature

    No full text
    A series of Mn-Co/TiO2 catalysts were prepared by wet impregnation method and evaluated for the oxidation of NO to NO2. The effects of Co amounts and calcination temperature on NO oxidation were investigated in detail. The catalytic oxidation ability in the temperature range of 403–473 K was obviously improved by doping cobalt into Mn/TiO2. These samples were characterized by nitrogen adsorption-desorption, X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), transmission electron microscope (TEM) and hydrogen temperature programmed reduction (H2-TPR). The results indicated that the formation of dispersed Co3O4·CoMnO3 mixed oxides through synergistic interaction between Mn-O and Co-O was directly responsible for the enhanced activities towards NO oxidation at low temperatures. Doping of Co enhanced Mn4+ formation and increased chemical adsorbed oxygen amounts, which also accelerated NO oxidation

    Low-Molecular-Weightt Polysaccharides From Pyropia yezoensis Enhance Tolerance of Wheat Seedlings (Triticum aestivum L.) to Salt Stress

    No full text
    Soil salinity is one of the major issues worldwide that affects plant growth and reduces agricultural productivity. Seaweed polysaccharides have been shown to promote crop growth and improve the resistance of plant to abiotic stresses. Pyropia yezoensis is a commercially important edible red alga in Southeast Asia. However, there is little research on the application of polysaccharides from P. yezoensis in agriculture. The molecular weight (MW) of polysaccharides influences their properties. Therefore, in this study, four representative polysaccharides from P. yezoensis (PP) with different MWs (MW: 3.2, 10.5, 29.0, and 48.8 kDa) were prepared by microwave-assisted acid hydrolysis. The relationship between the degradation of polysaccharides from P. yezoensis (DPP) and their effects on plant salt tolerance was investigated. The results showed that exogenous PP and DPPs increased wheat seedling shoot and root lengths, and fresh and dry weights, alleviated membrane lipid peroxidation, increased the chlorophyll content and enhanced antioxidant activities. The expression level examination analysis of several Na+/K+ transporter genes suggested that DPPs could protect plants from the damage of salt stress by coordinating the efflux and compartmentation of Na+. The results demonstrated that polysaccharides could regulate antioxidant enzyme activities and modulate intracellular ion concentration, thereby to protect plants from salt stress damage. Furthermore, there was a significant correlation between the tolerance of wheat seedlings to salt stress and MW of polysaccharides. The results suggested that the lower-MW samples (DPP1, 3.2 kDa) most effectively protect wheat seedlings against salt stress

    GNSS-TS-NRS: An Open-Source MATLAB-Based GNSS Time Series Noise Reduction Software

    No full text
    The global navigation satellite system (GNSS) has seen tremendous advances in measurement precision and accuracy, and it allows researchers to perform geodynamics and geophysics studies through the analysis of GNSS time series. Moreover, GNSS time series not only contain geophysical signals, but also unmodeled errors and other nuisance parameters, which affect the performance in the estimation of site coordinates and related parameters. As the number of globally distributed GNSS reference stations increases, GNSS time series analysis software should be developed with more flexible format support, better human–machine interaction, and with powerful noise reduction analysis. To meet this requirement, a new software named GNSS time series noise reduction software (GNSS-TS-NRS) was written in MATLAB and was developed. GNSS-TS-NRS allows users to perform noise reduction analysis and spatial filtering on common mode errors and to visualize GNSS position time series. The functions’ related theoretical background of GNSS-TS-NRS were introduced. Firstly, we showed the theoretical background algorithms of the noise reduction analysis (empirical mode decomposition (EMD), ensemble empirical mode decomposition (EEMD)). We also developed three improved algorithms based on EMD for noise reduction, and the results of the test example showed our proposed methods with better effect. Secondly, the spatial filtering model supported five algorithms on a separate common model error: The stacking filter method, weighted stacking filter method, correlation weighted superposition filtering method, distance weighted filtering method, and principal component analysis, as well as with batch processing. Finally, the developed software also enabled other functions, including outlier detection, correlation coefficient calculation, spectrum analysis, and distribution estimation. The main goal of the manuscript is to share the software with the scientific community to introduce new users to the GNSS time series noise reduction and application
    corecore