93 research outputs found

    Dynamic optimization for robust path planning of horizontal oil wells

    Get PDF
    This paper considers the three-dimensional path planning problem for horizontal oil wells. The decision variables in this problem are the curvature, tool-face angle and switching points for each turn segment in the path, and the optimization objective is to minimize the path length and target error. The optimal curvatures, tool-face angles and switching points can be readily determined using existing gradient-based dynamic optimization techniques. However, in a real drilling process, the actual curvatures and tool-face angles will inevitably deviate from the planned optimal values, thus causing an unexpected increase in the target error. This is a critical challenge that must be overcome for successful practical implementation. Accordingly, this paper introduces a sensitivity function that measures the rate of change in the target error with respect to the curvature and tool-face angle of each turn segment. Based on the sensitivity function, we propose a new optimization problem in which the switching points are adjusted to minimize target error sensitivity subject to continuous state inequality constraints arising from engineering specifications, and an additional constraint specifying the maximum allowable increase in the path length from the optimal value. Our main result shows that the sensitivity function can be evaluated by solving a set of auxiliary dynamic systems. By combining this result with the well-known time-scaling transformation, we obtain an equivalent transformed problem that can be solved using standard nonlinear programming algorithms. Finally, the paper concludes with a numerical example involving a practical path planning problem for a Ci-16-Cp146 well

    What is the future for nuclear fission technology? A technical opinion from the Guest Editors of VSI NFT series and the Editor of the Journal Nuclear Engineering and Design

    Get PDF
    The Nuclear Fission Technology (NFT) series of Virtual Special Issues (VSIs) for the Journal Nuclear Engineering and Design (J NED) was proposed in 2023, including the request to potential authors of manuscript to address the following questions: o For how long will (water-cooling based) large size nuclear reactor survive? o Will water-technology based SMRs displace large reactors? o Will non-water-cooling technology SMRs and micro-reactors have an industrial deployment? o Will breeding technology, including thorium exploitation, have due relevance? o Will ‘nuclear infrastructure’ (fuel supply, financial framework, competence by regulators for new designs, waste management, etc.) remain or be sufficiently robust? Several dozen Guest Editors (GEs), i.e., the authors of the present document, managed the activity together with the Editor-in-Chief (EiC) of the journal. More than one thousand scientists contributed 470+ manuscripts, not evenly distributed among the geographical regions of the world and not necessarily addressing directly the bullet-questions, but certainly providing a view of current research being done. Key conclusions are as follows: (a) Large size reactors are necessary for a sustainable and safe exploitation of nuclear fission technology; (b) The burning of 233U (from thorium) and 239Pu (from uranium) is unavoidable, as well as recycling residual uranium currently part of waste; (c) Nuclear infrastructures in countries that currently use, or are entering the use of, fission energy for electricity production need a century planning; (d) The adoption of small reactors for commercial naval propulsion, hydrogen production and desalination is highly recommended

    Nonlinear optical trapping effect with reverse saturable absorption

    No full text
    Nonlinear responses of nanoparticles induce enlightening phenomena in optical tweezers. With the gradual increase in optical intensity, effects from saturable absorption (SA) and reverse SA (RSA) arise in sequence and thereby modulate the nonlinear properties of materials. In current nonlinear optical traps, however, the underlying physical mechanism is mainly confined within the SA regime because threshold values required to excite the RSA regime are extremely high. Herein, we demonstrate, both in theory and experiment, nonlinear optical tweezing within the RSA regime, proving that a fascinating composite trapping state is achievable at ultrahigh intensities through an optical force reversal induced through nonlinear absorption. Integrated results help in perfecting the nonlinear optical trapping system, thereby providing beneficial guidance for wider applications of nonlinear optics. ImPhys/Adam groupImPhys/OpticsImPhys/Stallinga grou

    Application of a Logical Reasoning Approach Based Petri Net in Agriculture Expert System

    No full text
    International audienceFirst of all, a goal-guiding graphic reasoning approach that based on the predicate/transition system has been proposed for the first-order predicate logic. In process of reasoning, the premise is separated from the conclusion, which has been taken as the beginning of the backward reasoning that is purposeful and effective as well. Next, this reasoning approach has been applied in the agriculture expert system to present a method of solving problem, providing a new way for studying the reasoning mechanism of the agriculture expert system
    • …
    corecore