5 research outputs found

    4-Chloro-5-(morpholin-4-yl)-2-[(5-phenyl-1,3,4-oxadiazol-2-yl)methyl]pyridazin-3(2H)-one

    No full text
    In the title compound, C17H16ClN5O3, the phenyl and the oxadiazole rings are almost coplanar, subtending a dihedral angle of 4.34 (19)°. These rings lie almost normal to the pyridazine ring, making dihedral angles of 87.35 (16) and 89.06 (15)°, respectively. The morpholine ring has the usual chair conformation and its mean plane is inclined to the pyridazine ring by 39.45 (17)°. There is a short intramolecular C—H...Cl contact present. In the crystal, molecules are linked by bifurcated C—(H,H)...O hydrogen bonds and a C—H...N hydrogen bond, forming layers parallel to the ab plane

    A Multi-Information Dissemination Model Based on Cellular Automata

    No full text
    Significant public opinion events often trigger pronounced fluctuations in online discourse. While existing models have been extensively employed to analyze the propagation of public opinion, they frequently overlook the intricacies of information dissemination among heterogeneous users. To comprehensively address the implications of public opinion outbreaks, it is crucial to accurately predict the evolutionary trajectories of such events, considering the dynamic interplay of multiple information streams. In this study, we propose a SEInR model based on cellular automata to simulate the propagation dynamics of multi-information. By delineating information dissemination rules that govern the diverse modes of information propagation within the network, we achieve precise forecasts of public opinion trends. Through the concurrent simulation and prediction of multi-information game and evolution processes, employing Weibo users as nodes to construct a public opinion cellular automaton, our experimental analysis reveals a significant similarity exceeding 98% between the proposed model and the actual user participation curve observed on the Weibo platform

    QTL Mapping by Chromosome Segment Substitution Lines (CSSLs) Reveals Candidate Gene Controlling Leaf Sucrose Content in Soybean (<i>Glycine max</i> (L.) Merr.)

    No full text
    Understanding the genetic basis of leaf sucrose content can provide a novel way in improving soybean yields. To identify the related QTLs, 190 materials of chromosome fragment substitution lines (CSSLs) were used in this study. The CSSLs were developed from the cross between the cultivated soybean Suinong 14 (SN14) and wild soybean ZYD00006. Only one QTL with a high logarithm of odds (LOD) score was detected in 2021 and 2022 among 3780 bin markers (combined by 580,524 SNPs) distributed in 20 chromosomes. Nine candidate genes were screened and Glyma.14G029100 was considered as the hub gene. A promoter difference and CDS mutant was found among the parents and the reference genome, which lead to the relative transcriptional level difference.. Our results lay the groundwork for further research into its genetic mechanism
    corecore