198 research outputs found

    InvVis: Large-Scale Data Embedding for Invertible Visualization

    Full text link
    We present InvVis, a new approach for invertible visualization, which is reconstructing or further modifying a visualization from an image. InvVis allows the embedding of a significant amount of data, such as chart data, chart information, source code, etc., into visualization images. The encoded image is perceptually indistinguishable from the original one. We propose a new method to efficiently express chart data in the form of images, enabling large-capacity data embedding. We also outline a model based on the invertible neural network to achieve high-quality data concealing and revealing. We explore and implement a variety of application scenarios of InvVis. Additionally, we conduct a series of evaluation experiments to assess our method from multiple perspectives, including data embedding quality, data restoration accuracy, data encoding capacity, etc. The result of our experiments demonstrates the great potential of InvVis in invertible visualization.Comment: IEEE VIS 202

    AACP: Aesthetics assessment of children's paintings based on self-supervised learning

    Full text link
    The Aesthetics Assessment of Children's Paintings (AACP) is an important branch of the image aesthetics assessment (IAA), playing a significant role in children's education. This task presents unique challenges, such as limited available data and the requirement for evaluation metrics from multiple perspectives. However, previous approaches have relied on training large datasets and subsequently providing an aesthetics score to the image, which is not applicable to AACP. To solve this problem, we construct an aesthetics assessment dataset of children's paintings and a model based on self-supervised learning. 1) We build a novel dataset composed of two parts: the first part contains more than 20k unlabeled images of children's paintings; the second part contains 1.2k images of children's paintings, and each image contains eight attributes labeled by multiple design experts. 2) We design a pipeline that includes a feature extraction module, perception modules and a disentangled evaluation module. 3) We conduct both qualitative and quantitative experiments to compare our model's performance with five other methods using the AACP dataset. Our experiments reveal that our method can accurately capture aesthetic features and achieve state-of-the-art performance.Comment: AAAI 202

    Service Outsourcing Character Oriented Privacy Conflict Detection Method in Cloud Computing

    Get PDF
    Cloud computing has provided services for users as a software paradigm. However, it is difficult to ensure privacy information security because of its opening, virtualization, and service outsourcing features. Therefore how to protect user privacy information has become a research focus. In this paper, firstly, we model service privacy policy and user privacy preference with description logic. Secondly, we use the pellet reasonor to verify the consistency and satisfiability, so as to detect the privacy conflict between services and user. Thirdly, we present the algorithm of detecting privacy conflict in the process of cloud service composition and prove the correctness and feasibility of this method by case study and experiment analysis. Our method can reduce the risk of user sensitive privacy information being illegally used and propagated by outsourcing services. In the meantime, the method avoids the exception in the process of service composition by the privacy conflict, and improves the trust degree of cloud service providers

    Motion-Zero: Zero-Shot Moving Object Control Framework for Diffusion-Based Video Generation

    Full text link
    Recent large-scale pre-trained diffusion models have demonstrated a powerful generative ability to produce high-quality videos from detailed text descriptions. However, exerting control over the motion of objects in videos generated by any video diffusion model is a challenging problem. In this paper, we propose a novel zero-shot moving object trajectory control framework, Motion-Zero, to enable a bounding-box-trajectories-controlled text-to-video diffusion model. To this end, an initial noise prior module is designed to provide a position-based prior to improve the stability of the appearance of the moving object and the accuracy of position. In addition, based on the attention map of the U-net, spatial constraints are directly applied to the denoising process of diffusion models, which further ensures the positional and spatial consistency of moving objects during the inference. Furthermore, temporal consistency is guaranteed with a proposed shift temporal attention mechanism. Our method can be flexibly applied to various state-of-the-art video diffusion models without any training process. Extensive experiments demonstrate our proposed method can control the motion trajectories of objects and generate high-quality videos.Comment: Preprin

    An improved key-phase-free blade tip-timing technique for nonstationary test conditions and its application on large-scale centrifugal compressor blades

    Get PDF
    7partially_openopenHe, Changbo; Antoni, Jerome; Daga, Alessandro Paolo; Li, Hongkun; Chu, Ning; Lu, Siliang; Li, ZhixiongHe, Changbo; Antoni, Jerome; Daga, Alessandro Paolo; Li, Hongkun; Chu, Ning; Lu, Siliang; Li, Zhixion

    SalienTime: User-driven Selection of Salient Time Steps for Large-Scale Geospatial Data Visualization

    Full text link
    The voluminous nature of geospatial temporal data from physical monitors and simulation models poses challenges to efficient data access, often resulting in cumbersome temporal selection experiences in web-based data portals. Thus, selecting a subset of time steps for prioritized visualization and pre-loading is highly desirable. Addressing this issue, this paper establishes a multifaceted definition of salient time steps via extensive need-finding studies with domain experts to understand their workflows. Building on this, we propose a novel approach that leverages autoencoders and dynamic programming to facilitate user-driven temporal selections. Structural features, statistical variations, and distance penalties are incorporated to make more flexible selections. User-specified priorities, spatial regions, and aggregations are used to combine different perspectives. We design and implement a web-based interface to enable efficient and context-aware selection of time steps and evaluate its efficacy and usability through case studies, quantitative evaluations, and expert interviews.Comment: In Proceedings of the CHI Conference on Human Factors in Computing Systems (CHI'24), May 11-16, 2024, Honolulu, HI, US

    Advances in Patient Classification for Traditional Chinese Medicine: A Machine Learning Perspective

    Get PDF
    As a complementary and alternative medicine in medical field, traditional Chinese medicine (TCM) has drawn great attention in the domestic field and overseas. In practice, TCM provides a quite distinct methodology to patient diagnosis and treatment compared to western medicine (WM). Syndrome (ZHENG or pattern) is differentiated by a set of symptoms and signs examined from an individual by four main diagnostic methods: inspection, auscultation and olfaction, interrogation, and palpation which reflects the pathological and physiological changes of disease occurrence and development. Patient classification is to divide patients into several classes based on different criteria. In this paper, from the machine learning perspective, a survey on patient classification issue will be summarized on three major aspects of TCM: sign classification, syndrome differentiation, and disease classification. With the consideration of different diagnostic data analyzed by different computational methods, we present the overview for four subfields of TCM diagnosis, respectively. For each subfield, we design a rectangular reference list with applications in the horizontal direction and machine learning algorithms in the longitudinal direction. According to the current development of objective TCM diagnosis for patient classification, a discussion of the research issues around machine learning techniques with applications to TCM diagnosis is given to facilitate the further research for TCM patient classification

    MicroRNA-320a inhibits cell proliferation, migration and invasion by targeting BMI-1 in nasopharyngeal carcinoma

    Get PDF
    AbstractIn the present study, we investigated the roles and molecular mechanisms of miR-320a in human nasopharyngeal carcinoma (NPC). miR-320a expression was strongly reduced in NPC tissues and cell lines. Overexpression of miR-320a significantly suppressed NPC cell growth, migration, invasion and tumor growth in a xenograft mouse model. A luciferase reporter assay revealed that miR-320a could directly bind to the 3′ UTR of BMI-1. Overexpression of BMI-1 rescued miR-320a-mediated biological function. BMI-1 expression was found to be up-regulated and inversely correlated with miR-320a expression in NPC. Collectively, our data indicate that miR-320a plays a tumor suppressor role in the development and progression of NPC and may be a novel therapeutic target against NPC
    • …
    corecore