28 research outputs found

    The expression of Gli3, regulated by HOXD13, may play a role in idiopathic congenital talipes equinovarus

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Idiopathic congenital talipes equinovarus (ICTEV) is a congenital limb deformity. Based on extended transmission disequilibrium testing, <it>Gli-Kruppel family member 3 </it>(<it>Gli3</it>) has been identified as a candidate gene for ICTEV. Here, we verify the role of <it>Gli3 </it>in ICTEV development.</p> <p>Methods</p> <p>Using the rat ICTEV model, we analyzed the differences in <it>Gli3 </it>expression levels between model rats and normal control rats. We used luciferase reporter gene assays and ChIP/EMSA assays to analyze the regulatory elements of <it>Gli3</it>.</p> <p>Results</p> <p><it>Gli3 </it>showed higher expression levels in ICTEV model rats compared to controls (P < 0.05). We identified repressor and activator regions in the rat <it>Gli3 </it>promoter. The <it>Gli3 </it>promoter also contains two putative Hoxd13 binding sites. Using EMSA, the Hoxd13 binding site 2 was found to directly interact with Hoxd13 <it>in vitro</it>. ChIP assays of the Hoxd13-<it>Gli3 </it>promoter complex from a developing limb confirmed that endogenous Hoxd13 interacts with this region <it>in vivo</it>.</p> <p>Conclusion</p> <p>Our findings suggest that <it>HoxD13 </it>directly interacts with the promoter of <it>Gli3</it>. The increase of <it>Gli3 </it>expression in ICTEV model animal might result from the low expression of <it>HoxD13</it>.</p

    Data-Centric Mobile Crowdsensing

    No full text

    Distributed Event-Triggered Output Consensus for General Linear Heterogeneous Multi-Agent Systems With System Uncertainties

    No full text
    This paper is devoted to study the distributed event-triggered output consensus (ETOC) of heterogeneous multi-agent systems (MASs) with general linear dynamics subject to system uncertainties over digraphs. To account for the practical case where accurate system model cannot be obtained in advance, an event-triggered output consensus control method is studied based on the internal model principle such that the output consensus error approaches to a small adjustable bounded set related to the mismatch level between accurate and inaccurate model in a distributed way. To improve the triggering performance, a novel resilient state-independent threshold is introduced in the state-dependent threshold, which endows the piecewise continuous mixed threshold a feature of reset to a greater value when an event is triggered. Within the proposed ETOC method, the circumvent of continuous neighbouring state exchange is ensured. Consensus stability and Zeno phenomenon are analyzed to ensure the theoretical correctness of the proposed ETOC method. Numerical simulations are carried out

    Carbon Nanotube-Graphene Hybrid Electrodes with Enhanced Thermo-Electrochemical Cell Properties

    No full text
    Carbon nanotube-Graphene (CNT-Gr) hybrids were prepared on stainless steel substrates by the electrophoretic deposition (EPD) to make the thermo-electrochemical cell (TEC) electrodes. The as-obtained TEC electrodes were investigated by the SEM, XRD, Raman spectroscopy, tensile, and surface resistance tests. These hybrid electrodes exhibited significant improved TEC performances compared to the pristine CNT electrode. In addition, these hybrid electrodes could be optimized by tuning the contents of the graphene in the hybrids, and the CNT-Gr-0.1 hybrid electrode showed the best TEC performance with the current density of 62.8 A&middot;m&minus;2 and the power density of 1.15 W&middot;m&minus;2, 30.4% higher than the CNT electrode. The enhanced TEC performance is attributed to improvements in the electrical and thermal conductivities, as well as the adhesion between the CNT-Gr hybrid and the substrate. Meanwhile, the relative conversion efficiency of the TECs can reach 1.35%. The investigation suggests that the growth of CNT-Gr hybrid electrodes by the EPD technique may offer a promising approach for practical applications of the carbon nanomaterial-based TEC electrodes

    Panax quinquefolius saponins combined with dual antiplatelet therapy enhanced platelet inhibition with alleviated gastric injury via regulating eicosanoids metabolism

    No full text
    Abstract Background Panax quinquefolius saponin (PQS) was shown beneficial against platelet adhesion and for gastroprotection. This study aimed to investigate the integrated efficacy of PQS with dual antiplatelet therapy (DAPT) on platelet aggregation, myocardial infarction (MI) expansion and gastric injury in a rat model of acute MI (AMI) and to explore the mechanism regarding arachidonic acid (AA)-derived eicosanoids metabolism. Methods Wistar rats were subjected to left coronary artery occlusion to induce AMI model followed by treatment with DAPT, PQS or the combined therapy. Platelet aggregation was measured by light transmission aggregometry. Infarct size, myocardial histopathology was evaluated by TTC and H&E staining, respectively. Gastric mucosal injury was examined by scanning electron microscope (SEM). A comprehensive eicosanoids profile in plasma and gastric mucosa was characterized by liquid chromatography-mass spectrometer-based lipidomic analysis. Results PQS+DAPT further decreased platelet aggregation, lessened infarction and attenuated cardiac injury compared with DAPT. Plasma lipidomic analysis revealed significantly increased synthesis of epoxyeicosatrienoic acid (EET) and prostaglandin (PG) I2 (potent inhibitors for platelet adhesion and aggregation) while markedly decreased thromboxane (TX) A2 (an agonist for platelet activation and thrombosis) by PQS+DAPT, relative to DAPT. DAPT induced overt gastric mucosal damage, which was attenuated by PQS co-administration. Mucosal gastroprotective PGs (PGE2, PGD2 and PGI2) were consistently increased after supplementation of PQS+DAPT. Conclusions Collectively, PQS+DAPT showed synergistic effect in platelet inhibition with ameliorated MI expansion partially through upregulation of AA/EET and AA/PGI2 synthesis while suppression of AA/TXA2 metabolism. PQS attenuated DAPT-induced gastric injury, which was mechanistically linked to increased mucosal PG production

    Study on Characteristics of Coupled-Core Four-Core Fibers With Different Core Pitches

    No full text
    We studied the characteristics of coupled-core four-core fibers (CC-4CFs) with different core pitches both theoretically and experimentally. The spatial mode dispersions of different fibers were analyzed, and the result agrees well with theoretical ones. In the experiment, we achieved a spatial mode dispersion as low as 3.72 ps&#x002F;km1&#x002F;2 for a 4 km-long CC-4CF with core pitch of 19 &#x03BC;m at a bending radius of 8 cm. The impulse response matrices of four core fibers with different core pitches was investigated using swept-wavelength interferometry over 100 nm bandwidth. The impulse responses were Gaussian-shaped and consistent between different inputs and outputs for CC-4CFs. Our results show that the CC-4CFs with core pitches of 17 and 19 &#x03BC;m exhibit narrower pulse broadening. In addition, the mode-dependent losses of different fibers were analyzed. For the fibers with core pitch of 19 &#x03BC;m, the estimated mode-dependent loss was lower than 3 dB for the entire 100 nm bandwidth. Our results are especially helpful for developing coupled-core multicore fibers for long-haul transmission applications

    Sulfamethoxazole stress endangers the gut health of sea cucumber (Apostichopus japonicus) and affects host metabolism

    No full text
    Sulfamethoxazole (SMZ) is a frequently detected antibiotic in the environment, and there is a growing concern about its potential toxic effects on aquatic organisms. sea cucumber (Apostichopus japonicas) is a benthic invertebrate whose gut acts as a primary immune defense and serves critical protective barrier. In this study, growth performance, histology, gut microbiota, and metabolomics analyses were performed to investigate the toxic response in the intestine of sea cucumber effects caused by SMZ stress for 56 d by evaluating with different concentrations of SMZ (0, 1.2×10−3, and 1.2 mg/L). The weight gain rate of sea cucumbers under SMZ stress showed significant decrease, indicating that the growth of sea cucumbers was hindered. Analysis of the intestinal morphological features indicated that SMZ stimulation resulted in atrophy of the sea cucumber gut. In the 1.2×10−3 mg/L concentration, the thickness of muscle and mucosal layers was reduced by 12.40% and 21.39%, while in the 1.2 mg/L concentration, the reductions were 35.08% and 26.98%. The abundance and diversity of sea cucumber intestinal bacteria decreased significantly (P < 0.05) under the influence of SMZ. Notably, the intestinal bacteria of sea cucumber became homogenized with the increase in SMZ concentration, and the relative abundance of Ralstonia reached 81.64% under the stress of 1.2 mg/L concentration. The SMZ stress significantly impacted host metabolism and disrupted balance, particularly in L-threonine, L-tyrosine, neuronic acid, piperine, and docosapentaenoic acid. SMZ leads to dysregulation of metabolites, resulting in growth inhibition and potential inflammatory responses that could adversely affect the normal activities of aquatic organisms. Further metabolic pathway enrichment analyses demonstrated that impaired biosynthesis of unsaturated fatty acids and aminoacyl-tRNA biosynthesis metabolic pathway were major reasons for SMZ stress-induced intestinal bacteria dysbiosis. This research aims to provide some theoretical evidence for the ecological hazard assessment of antibiotics in water
    corecore