14,831 research outputs found

    THE EFFECT OF APPLIED DIRECTION OF KINESIO TAPING IN ANKLE MUSCLE STRENGTH AND FLEXIBILITY

    Get PDF
    The purpose of this study was to examine the effect of applied direction of Kinesio taping (KT) in ankle range of motion and calf muscle strength. Twenty healthy subjects voluntarily participated in this study. The ankle plantar flexor muscle strength and ankle dorsiflexion ROM were assessed in knee flexion and knee extension before and after taping applied. Two applied directions, heel to posterior of knee cap (insertion to origin of calf muscles) and posterior of knee cap to heel (origin to insertion of calf muscles) were applied over both side of calf muscles, respectively. The results had not showed significantly difference in any of the results. The beneficial effects of applied direction of KT has not provided scientific evidence in this study. Future study may be able to seek other methods to identify the effect on strength or flexibility while KT applied

    Fabrication of a Flexible Micro CO Sensor for Micro Reformer Applications

    Get PDF
    Integration of a reformer and a proton exchange membrane fuel cell (PEMFC) is problematic due to the presence in the gas from the reforming process of a slight amount of carbon monoxide. Carbon monoxide poisons the catalyst of the proton exchange membrane fuel cell subsequently degrading the fuel cell performance, and necessitating the sublimation of the reaction gas before supplying to fuel cells. Based on the use of micro-electro-mechanical systems (MEMS) technology to manufacture flexible micro CO sensors, this study elucidates the relation between a micro CO sensor and different SnO2 thin film thicknesses. Experimental results indicate that the sensitivity increases at temperatures ranging from 100–300 °C. Additionally, the best sensitivity is obtained at a specific temperature. For instance, the best sensitivity of SnO2 thin film thickness of 100 nm at 300 °C is 59.3%. Moreover, a flexible micro CO sensor is embedded into a micro reformer to determine the CO concentration in each part of a micro reformer in the future, demonstrating the inner reaction of a micro reformer in depth and immediate detection

    Absorption Cross Sections of NH_3, NH_2D, NHD_2, and ND_3 in the Spectral Range 140-220 nm and Implications for Planetary Isotopic Fractionation

    Get PDF
    Cross sections for photoabsorption of NH_3, NH_2D, NHD_2, and ND_3 in the spectral region 140-220 nm were determined at ~298 K using synchrotron radiation. Absorption spectra of NH_2D and NHD_2 were deduced from spectra of mixtures of NH_3 and ND_3, of which the equilibrium concentrations for all four isotopologues obey statistical distributions. Cross sections of NH_2D, NHD_2, and ND_3 are new. Oscillator strengths, an integration of absorption cross sections over the spectral lines, for both A ← X and B ← X systems of NH_3 agree satisfactorily with previous reports; values for NH_2D, NHD_2, and ND_3 agree with quantum chemical predictions. The photolysis of NH_3 provides a major source of reactive hydrogen in the lower stratosphere and upper troposphere of giant planets such as Jupiter. Incorporating the measured photoabsorption cross sections of NH_3 and NH_2D into the Caltech/JPL photochemical diffusive model for the atmosphere of Jupiter, we find that the photolysis efficiency of NH_2D is lower than that of NH_3 by as much as 30%. The D/H ratio in NH_2D/NH_3 for tracing the microphysics in the troposphere of Jupiter is also discussed

    SpeechGen: Unlocking the Generative Power of Speech Language Models with Prompts

    Full text link
    Large language models (LLMs) have gained considerable attention for Artificial Intelligence Generated Content (AIGC), particularly with the emergence of ChatGPT. However, the direct adaptation of continuous speech to LLMs that process discrete tokens remains an unsolved challenge, hindering the application of LLMs for speech generation. The advanced speech LMs are in the corner, as that speech signals encapsulate a wealth of information, including speaker and emotion, beyond textual data alone. Prompt tuning has demonstrated notable gains in parameter efficiency and competitive performance on some speech classification tasks. However, the extent to which prompts can effectively elicit generation tasks from speech LMs remains an open question. In this paper, we present pioneering research that explores the application of prompt tuning to stimulate speech LMs for various generation tasks, within a unified framework called SpeechGen, with around 10M trainable parameters. The proposed unified framework holds great promise for efficiency and effectiveness, particularly with the imminent arrival of advanced speech LMs, which will significantly enhance the capabilities of the framework. The code and demos of SpeechGen will be available on the project website: \url{https://ga642381.github.io/SpeechPrompt/speechgen}Comment: Work in progress. The first three authors contributed equall

    A Novel Method for In-Situ Monitoring of Local Voltage, Temperature and Humidity Distributions in Fuel Cells Using Flexible Multi-Functional Micro Sensors

    Get PDF
    In this investigation, micro voltage, temperature and humidity sensors were fabricated and integrated for the first time on a stainless steel foil using micro-electro-mechanical systems (MEMS). These flexible multi-functional micro sensors have the advantages of high temperature resistance, flexibility, smallness, high sensitivity and precision of location. They were embedded in a proton exchange membrane fuel cell (PEMFC) and used to simultaneously measure variations in the inner voltage, temperature and humidity. The accuracy and reproducibility of the calibrated results obtained using the proposed micro sensors is excellent. The experimental results indicate that, at high current density and 100%RH or 75%RH, the relative humidity midstream and downstream saturates due to severe flooding. The performance of the PEM fuel cell can be stabilized using home-made flexible multi-functional micro sensors by the in-situ monitoring of local voltage, temperature and humidity distributions within it
    • 

    corecore