12,329 research outputs found

    Broadband enhancement of light harvesting in luminescent solar concentrator

    Full text link
    Luminescent solar concentrator (LSC) can absorb large-area incident sunlight, then emit luminescence with high quantum efficiency, which finally be collected by a small photovoltaic (PV) system. The light-harvesting area of the PV system is much smaller than that of the LSC system, potentially improving the efficiency and reducing the cost of solar cells. Here, based on Fermi-golden rule, we present a theoretical description of the luminescent process in nanoscale LSCs where the conventional ray-optics model is no longer applicable. As an example calculated with this new model, we demonstrate that a slot waveguide consisting of a nanometer-sized low-index slot region sandwiched by two high-index regions provides a broadband enhancement of light harvesting by the luminescent centers in the slot region. This is because the slot waveguide can (1) greatly enhance the spontaneous emission due to the Purcell effect, (2) dramatically increase the effective absorption cross-section of luminescent centers, and (3) strongly improve the quantum efficiency of luminescent centers. It is found that about 80% solar photons can be ultimately converted to waveguide-coupled luminescent photons even for a low luminescent quantum efficiency of 0.5. This LSC is potential to construct a tandem structure which can absorb nearly full-spectrum solar photons, and also may be of special interest for building integrated nano-PV applications

    Intelligent resource scheduling for 5G radio access network slicing

    Get PDF
    It is widely acknowledged that network slicing can tackle the diverse use cases and connectivity services of the forthcoming next-generation mobile networks (5G). Resource scheduling is of vital importance for improving resource-multiplexing gain among slices while meeting specific service requirements for radio access network (RAN) slicing. Unfortunately, due to the performance isolation, diversified service requirements, and network dynamics (including user mobility and channel states), resource scheduling in RAN slicing is very challenging. In this paper, we propose an intelligent resource scheduling strategy (iRSS) for 5G RAN slicing. The main idea of an iRSS is to exploit a collaborative learning framework that consists of deep learning (DL) in conjunction with reinforcement learning (RL). Specifically, DL is used to perform large time-scale resource allocation, whereas RL is used to perform online resource scheduling for tackling small time-scale network dynamics, including inaccurate prediction and unexpected network states. Depending on the amount of available historical traffic data, an iRSS can flexibly adjust the significance between the prediction and online decision modules for assisting RAN in making resource scheduling decisions. Numerical results show that the convergence of an iRSS satisfies online resource scheduling requirements and can significantly improve resource utilization while guaranteeing performance isolation between slices, compared with other benchmark algorithms

    Chronic CSE Treatment Induces the Growth of Normal Oral Keratinocytes via PDK2 Upregulation, Increased Glycolysis and HIF1α Stabilization

    Get PDF
    Exposure to cigarette smoke is a major risk factor for head and neck squamous cell carcinoma (HNSCC). We have previously established a chronic cigarette smoke extract (CSE)-treated human oral normal keratinocyte model, demonstrating an elevated frequency of mitochondrial mutations in CSE treated cells. Using this model we further characterized the mechanism by which chronic CSE treatment induces increased cellular proliferation.We demonstrate that chronic CSE treatment upregulates PDK2 expression, decreases PDH activity and thereby increases the glycolytic metabolites pyruvate and lactate. We also found that the chronic CSE treatment enhanced HIF1α accumulation through increased pyruvate and lactate production in a manner selectively reversible by ascorbate. Use of a HIF1α small molecule inhibitor blocked the growth induced by chronic CSE treatment in OKF6 cells. Furthermore, chronic CSE treatment was found to increase ROS (reactive oxygen species) production, and application of the ROS scavengers N-acetylcysteine abrogated the expression of PDK2 and HIF1α. Notably, treatment with dichloroacetate, a PDK2 inhibitor, also decreased the HIF1α expression as well as cell proliferation in chronic CSE treated OKF6 cells.Our findings suggest that chronic CSE treatment contribute to cell growth via increased ROS production through mitochondrial mutations, upregulation of PDK2, attenuating PDH activity thereby increasing glycolytic metabolites, resulting in HIF1α stabilization. This study suggests a role for chronic tobacco exposure in the development of aerobic glycolysis and normoxic HIFα activation as a part of HNSCC initiation. These data may provide insights into development of chemopreventive strategies for smoking related cancers
    • …
    corecore