8,310 research outputs found

    Understanding Distributed Representations of Concepts in Deep Neural Networks without Supervision

    Full text link
    Understanding intermediate representations of the concepts learned by deep learning classifiers is indispensable for interpreting general model behaviors. Existing approaches to reveal learned concepts often rely on human supervision, such as pre-defined concept sets or segmentation processes. In this paper, we propose a novel unsupervised method for discovering distributed representations of concepts by selecting a principal subset of neurons. Our empirical findings demonstrate that instances with similar neuron activation states tend to share coherent concepts. Based on the observations, the proposed method selects principal neurons that construct an interpretable region, namely a Relaxed Decision Region (RDR), encompassing instances with coherent concepts in the feature space. It can be utilized to identify unlabeled subclasses within data and to detect the causes of misclassifications. Furthermore, the applicability of our method across various layers discloses distinct distributed representations over the layers, which provides deeper insights into the internal mechanisms of the deep learning model.Comment: Published in AAAI2024. First two authors contributed equally. The code is available at https://github.com/daheekwon/RD

    GAIT ANALYSIS IN CHILDREN WITH AUTISM USING TEMPORAL-SPATIAL AND FOOT PRESSURE VARIABLES

    Get PDF
    The purpose of this study was to investigate gait patterns of children with autism using temporal-spatial and foot pressure variables. A total of 30 children participated; 15 autistic children and 15 age matched controls. Group differences were tested using an independent t-test performed by SPSS. The cadence and step/extremity ratio was significantly lower for the experimental group than the control group. The step width was wider; while cycle time, double support time, stance time was longer for the experimental group. The active pressure area and maximum pressure in the hind foot were lower for the experimental group. There were reduced gait velocities and reduced pressure areas in the hind foot and mid foot

    Ulam-Hyers Stability of Trigonometric Functional Equation with Involution

    Get PDF
    Let S and G be a commutative semigroup and a commutative group, respectively, C and R+ the sets of complex numbers and nonnegative real numbers, respectively, and σ:S→S or σ:G→G an involution. In this paper, we first investigate general solutions of the functional equation f(x+σy)=f(x)g(y)-g(x)f(y) for all x,y∈S, where f,g:S→C. We then prove the Hyers-Ulam stability of the functional equation; that is, we study the functional inequality |f(x+σy)-f(x)g(y)+g(x)f(y)|≤ψ(y) for all x,y∈G, where f,g:G→C and ψ:G→R+

    N-(2,5-Dimeth­oxy­phen­yl)-N′-(4-hy­droxy­pheneth­yl)urea

    Get PDF
    In the title compound, C17H20N2O4, the 2,5-dimeth­oxy­phenyl unit is almost planar, with an r.m.s. deviation of 0.015 Å. The dihedral angle between the 2,5-dimeth­oxy­phenyl ring and the urea plane is 20.95 (8)°. The H atoms of the urea NH groups are positioned syn to each other. The mol­ecular structure is stabilized by a short intra­molecular N—H⋯O hydrogen bond. In the crystal, inter­molecular N—H⋯O and O—H⋯O hydrogen bonds link the mol­ecules into a three-dimensional network

    Environmental considerations of plastic behaviors for automobile applications

    Get PDF
    AbstractIt is well known fact that the thermo-mechanical behaviors of polymeric materials are strongly influenced by environmental factors, and, for automobiles, the mechanical properties of interior plastic structures are noticeably changed by being repeatedly exposed to environments such as sun light and rains. As the properties change, mechanical fits such as fasteners and clips in automobiles lose their tightness, creating unexpected noises. To consider Buzz, Squeak and Rattle (BSR) from initial stage of the interior design, it is very important to obtain, analyze and understand the structural behaviors of the materials under environmental changes as well as time. In this report, the mechanical property changes of the plastics for automobiles are measured to investigate the temperature and humidity effects. The samples are undergone different temperature and humidity conditions, and regularly taken out to measure the thermo-mechanical properties. The data are compared with the original samples, and analyzed for the properties change. Viscoelastic characteristics such as glass transition temperatures and storage/loss modulus were also investigate

    1-[3-(Hy­droxy­meth­yl)phen­yl]-3-phenyl­urea

    Get PDF
    In the title compound, C14H14N2O2, the dihedral angle between the benzene rings is 23.6 (1)°. The H atoms of the urea NH groups are positioned syn to each other. In the crystal, inter­molecular N—H⋯O and O—H⋯O hydrogen bonds link the mol­ecules into a three-dimensional network

    A Highly Sensitive Enzyme-Amplified Immunosensor Based on a Nanoporous Niobium Oxide (Nb2O5) Electrode

    Get PDF
    We report on the development of an enzyme-amplified sandwich-type immunosensor based on a thin gold film sputtered on an anodic nanoporous niobium oxide (Au@Nb2O5) electrode. The electrocatalytic activity of enzymatically amplified electroactive species and a stable electrode consisting of Au@Nb2O5 were used to obtain a powerful signal amplification of the electrochemical immunobiosensor. The method using this electrochemical biosensor based on an Au@Nb2O5 electrode provides a much better performance than those based on conventional bulk gold or niobium oxide electrodes. Our novel approach does not require any time-consuming cleaning steps to yield reproducible electrochemical signals. In addition, the strong adhesion of gold films on the niobium oxide electrodes offers a very stable substrate during electrochemical biosensing. Cyclic voltammetry measurements indicate that non-specific binding of proteins to the modified Au@Nb2O5 surface is sufficiently low to be ignored in the case of our novel system. Finally, we demonstrated the ability of the biosensor based on an Au@Nb2O5 offering the enhanced performance with a high resolution and sensitivity. Therefore, it is expected that the biosensor based on an Au@Nb2O5 has great potential for highly efficient biological devices
    corecore