1,019 research outputs found

    Efficient and accurate simulations of deformable particles immersed in a fluid using a combined immersed boundary lattice Boltzmann finite element method

    Get PDF
    The deformation of an initially spherical capsule, freely suspended in simple shear flow, can be computed analytically in the limit of small deformations [D. Barthes-Biesel, J. M. Rallison, The Time-Dependent Deformation of a Capsule Freely Suspended in a Linear Shear Flow, J. Fluid Mech. 113 (1981) 251-267]. Those analytic approximations are used to study the influence of the mesh tessellation method, the spatial resolution, and the discrete delta function of the immersed boundary method on the numerical results obtained by a coupled immersed boundary lattice Boltzmann finite element method. For the description of the capsule membrane, a finite element method and the Skalak constitutive model [R. Skalak et al., Strain Energy Function of Red Blood Cell Membranes, Biophys. J. 13 (1973) 245-264] have been employed. Our primary goal is the investigation of the presented model for small resolutions to provide a sound basis for efficient but accurate simulations of multiple deformable particles immersed in a fluid. We come to the conclusion that details of the membrane mesh, as tessellation method and resolution, play only a minor role. The hydrodynamic resolution, i.e., the width of the discrete delta function, can significantly influence the accuracy of the simulations. The discretization of the delta function introduces an artificial length scale, which effectively changes the radius and the deformability of the capsule. We discuss possibilities of reducing the computing time of simulations of deformable objects immersed in a fluid while maintaining high accuracy.Comment: 23 pages, 14 figures, 3 table

    Anomalous Hall effect in paramagnetic two dimensional systems

    Full text link
    We investigate the possibility of observing the anomalous Hall effect (AHE) in two dimensional paramagnetic systems. We apply the semiclassical equations of motion to carriers in the conduction and valence bands of wurtzite and zincblende quantum wells in the exchange field generated by magnetic impurities and we calculate the anomalous Hall conductivity based on the Berry phase corrections to the carrier velocity. We show that under certain circumstances this conductivity approaches one half of the conductance quantum. We consider the effect of an external magnetic field and show that for a small enough field the theory is unaltered.Comment: 9 pages, 10 figures, 2 table

    Large positive in-plane magnetoresistance induced by localized states at nanodomain boundaries in graphene

    Full text link
    Graphene supports long spin lifetimes and long diffusion lengths at room temperature, making it highly promising for spintronics. However, making graphene magnetic remains a principal challenge despite the many proposed solutions. Among these, graphene with zig-zag edges and ripples are the most promising candidates, as zig-zag edges are predicted to host spin-polarized electronic states, and spin-orbit coupling can be induced by ripples. Here we investigate the magnetoresistance of graphene grown on technologically relevant SiC/Si(001) wafers, where inherent nanodomain boundaries sandwich zig-zag structures between adjacent ripples of large curvature. Localized states at the nanodomain boundaries result in an unprecedented positive in-plane magnetoresistance with a strong temperature dependence. Our work may offer a tantalizing way to add the spin degree of freedom to graphene
    corecore