1,019 research outputs found
Recommended from our members
Chaos of Wolbachia Sequences Inside the Compact Fig Syconia of Ficus benjamina (Ficus: Moraceae)
Figs and fig wasps form a peculiar closed community in which the Ficus tree provides a compact syconium (inflorescence) habitat for the lives of a complex assemblage of Chalcidoid insects. These diverse fig wasp species have intimate ecological relationships within the closed world of the fig syconia. Previous surveys of Wolbachia, maternally inherited endosymbiotic bacteria that infect vast numbers of arthropod hosts, showed that fig wasps have some of the highest known incidences of
Wolbachia amongst all insects. We ask whether the evolutionary patterns of Wolbachia sequences in this closed syconium community are different from those in the outside world. In the present study, we sampled all 17 fig wasp species living on Ficus benjamina, covering 4 families, 6 subfamilies, and 8 genera of wasps. We made a thorough survey of Wolbachia infection patterns and studied evolutionary patterns in wsp (Wolbachia Surface Protein) sequences. We find evidence for high infection incidences, frequent recombination between Wolbachia strains, and considerable horizontal transfer, suggesting rapid evolution of Wolbachia sequences within the syconium community. Though the fig wasps have relatively limited contact with outside world, Wolbachia may be introduced to the syconium community via horizontal transmission by fig wasps species that have winged males and visit the syconia earlier
Efficient and accurate simulations of deformable particles immersed in a fluid using a combined immersed boundary lattice Boltzmann finite element method
The deformation of an initially spherical capsule, freely suspended in simple
shear flow, can be computed analytically in the limit of small deformations [D.
Barthes-Biesel, J. M. Rallison, The Time-Dependent Deformation of a Capsule
Freely Suspended in a Linear Shear Flow, J. Fluid Mech. 113 (1981) 251-267].
Those analytic approximations are used to study the influence of the mesh
tessellation method, the spatial resolution, and the discrete delta function of
the immersed boundary method on the numerical results obtained by a coupled
immersed boundary lattice Boltzmann finite element method. For the description
of the capsule membrane, a finite element method and the Skalak constitutive
model [R. Skalak et al., Strain Energy Function of Red Blood Cell Membranes,
Biophys. J. 13 (1973) 245-264] have been employed. Our primary goal is the
investigation of the presented model for small resolutions to provide a sound
basis for efficient but accurate simulations of multiple deformable particles
immersed in a fluid. We come to the conclusion that details of the membrane
mesh, as tessellation method and resolution, play only a minor role. The
hydrodynamic resolution, i.e., the width of the discrete delta function, can
significantly influence the accuracy of the simulations. The discretization of
the delta function introduces an artificial length scale, which effectively
changes the radius and the deformability of the capsule. We discuss
possibilities of reducing the computing time of simulations of deformable
objects immersed in a fluid while maintaining high accuracy.Comment: 23 pages, 14 figures, 3 table
Anomalous Hall effect in paramagnetic two dimensional systems
We investigate the possibility of observing the anomalous Hall effect (AHE)
in two dimensional paramagnetic systems. We apply the semiclassical equations
of motion to carriers in the conduction and valence bands of wurtzite and
zincblende quantum wells in the exchange field generated by magnetic impurities
and we calculate the anomalous Hall conductivity based on the Berry phase
corrections to the carrier velocity. We show that under certain circumstances
this conductivity approaches one half of the conductance quantum. We consider
the effect of an external magnetic field and show that for a small enough field
the theory is unaltered.Comment: 9 pages, 10 figures, 2 table
Large positive in-plane magnetoresistance induced by localized states at nanodomain boundaries in graphene
Graphene supports long spin lifetimes and long diffusion lengths at room temperature, making it highly promising for spintronics. However, making graphene magnetic remains a principal challenge despite the many proposed solutions. Among these, graphene with zig-zag edges and ripples are the most promising candidates, as zig-zag edges are predicted to host spin-polarized electronic states, and spin-orbit coupling can be induced by ripples. Here we investigate the magnetoresistance of graphene grown on technologically relevant SiC/Si(001) wafers, where inherent nanodomain boundaries sandwich zig-zag structures between adjacent ripples of large curvature. Localized states at the nanodomain boundaries result in an unprecedented positive in-plane magnetoresistance with a strong temperature dependence. Our work may offer a tantalizing way to add the spin degree of freedom to graphene
- …