4,039 research outputs found
Pulse shape discrimination in an organic scintillation phoswich detector using machine learning techniques
We developed machine learning algorithms for distinguishing scintillation
signals from a plastic-liquid coupled detector known as a phoswich. The
challenge lies in discriminating signals from organic scintillators with
similar shapes and short decay times. Using a single-readout phoswich detector,
we successfully identified radiation signals from two scintillating
components. Our Boosted Decision Tree algorithm demonstrated a maximum
discrimination power of 3.02 0.85 standard deviation in the 950 keV
region, providing an efficient solution for self-shielding and enhancing
radiation detection capabilities.Comment: 11pages, 7 figure
Limits of Binaries That Can Be Characterized by Gravitational Microlensing
Due to the high efficiency of planet detections, current microlensing planet
searches focus on high-magnification events. High-magnification events are
sensitive to remote binary companions as well and thus a sample of
wide-separation binaries are expected to be collected as a byproduct. In this
paper, we show that characterizing binaries for a portion of this sample will
be difficult due to the degeneracy of the binary-lensing parameters. This
degeneracy arises because the perturbation induced by the binary companion is
well approximated by the Chang-Refsdal lensing for binaries with separations
greater than a certain limit. For binaries composed of equal mass lenses, we
find that the lens binarity can be noticed up to the separations of
times of the Einstein radius corresponding to the mass of each lens. Among
these binaries, however, we find that the lensing parameters can be determined
only for a portion of binaries with separations less than times of
the Einstein radius.Comment: 5 pages, 3 figures, 1 tabl
Solitary Necrotic Nodules of the Liver Mimicking Hepatic Metastasis: Report of Two Cases
We present two cases of solitary necrotic nodules of the liver which on radiologic images mimicked hepatic metastasis. Solitary necrotic nodule of the liver is a rare but benign entity which histopathologically consists of an outer fibrotic capsule with inflammatory cells and a central core of amorphous necrotic material. The lesion was seen on contrast-enhanced CT as an ovoid-shaped hypoattenuating nodule; on CT during hepatic arteriography as enhancing nodule; on intraoperative US as a target-appearing hypoechoic nodule; on T2WI as a hyperintensity nodule, and on dynamic MR as a subtle peripheral enhancing nodule. Although the radiologic features are not specific, solitary necrotic nodule of the liver should be included in the differential diagnosis of hepatic metastasis
Echocardiographic View Classification with Integrated Out-of-Distribution Detection for Enhanced Automatic Echocardiographic Analysis
In the rapidly evolving field of automatic echocardiographic analysis and
interpretation, automatic view classification is a critical yet challenging
task, owing to the inherent complexity and variability of echocardiographic
data. This study presents ECHOcardiography VIew Classification with
Out-of-Distribution dEtection (ECHO-VICODE), a novel deep learning-based
framework that effectively addresses this challenge by training to classify 31
classes, surpassing previous studies and demonstrating its capacity to handle a
wide range of echocardiographic views. Furthermore, ECHO-VICODE incorporates an
integrated out-of-distribution (OOD) detection function, leveraging the
relative Mahalanobis distance to effectively identify 'near-OOD' instances
commonly encountered in echocardiographic data. Through extensive
experimentation, we demonstrated the outstanding performance of ECHO-VICODE in
terms of view classification and OOD detection, significantly reducing the
potential for errors in echocardiographic analyses. This pioneering study
significantly advances the domain of automated echocardiography analysis and
exhibits promising prospects for substantial applications in extensive clinical
research and practice
Could Fractional Exhaled Nitric Oxide Test be Useful in Predicting Inhaled Corticosteroid Responsiveness in Chronic Cough? A Systematic Review
© 2016 Background Fractional exhaled nitric oxide (FENO) is a safe and convenient test for assessing T H 2 airway inflammation, which is potentially useful in the management of patients with chronic cough. Objective To summarize the current evidence on the diagnostic usefulness of FENO for predicting inhaled corticosteroid (ICS) responsiveness in patients with chronic cough. Methods A systematic literature review was conducted to identify articles published in peer-reviewed journals up to February 2015, without language restriction. We included studies that reported the usefulness of FENO (index test) for predicting ICS responsiveness (reference standard) in patients with chronic cough (target condition). The data were extracted to construct a 2 à 2 accuracy table. Study quality was assessed with Quality Assessment of Diagnostic Accuracy Studies 2. Results We identified 5 original studies (2 prospective and 3 retrospective studies). We identified considerable heterogeneities in study design and outcome definitions, and thus were unable to perform a meta-analysis. The proportion of ICS responders ranged from 44% to 59%. Sensitivity and specificity ranged from 53% to 90%, and from 63% to 97%, respectively. The reported area under the curve ranged from abou t 0.60 to 0.87; however, studies with a prospective design and a lower prevalence of asthma had lower area under the curve values. None measured placebo effects or objective cough frequency. Conclusions We did not find strong evidence to support the use of FENO tests for predicting ICS responsiveness in chronic cough. Further studies need to have a randomized, placebo-controlled design, and should use validated measurement tools for cough. Standardization would facilitate the development of clinical evidence
The Fruit Hull of Gleditsia sinensis
Lung cancer has substantial mortality worldwide, and chemotherapy is a routine regimen for the treatment of patients with lung cancer, despite undesirable effects such as drug resistance and chemotoxicity. Here, given a possible antitumor effect of the fruit hull of Gleditsia sinensis (FGS), we tested whether FGS enhances the effectiveness of cis-diammine dichloridoplatinum (II) (CDDP), a chemotherapeutic drug. We found that CDDP, when administered with FGS, significantly decreased the viability and increased the apoptosis and cell cycle arrest of Lewis lung carcinoma (LLC) cells, which were associated with the increase of p21 and decreases of cyclin D1 and CDK4. Concordantly, when combined with FGS, CDDP significantly reduced the volume and weight of tumors derived from LLC subcutaneously injected into C57BL/6 mice, with concomitant increases of phosphor-p53 and p21 in tumor tissue. Together, these results show that FGS could enhance the antitumor activity of CDDP, suggesting that FGS can be used as a complementary measure to enhance the efficacy of a chemotherapeutic agent such as CDDP
Interaction between Intrathecal Gabapentin and Adenosine in the Formalin Test of Rats
Spinal gabapentin and adenosine have been known to display an antinociceptive effect. We evaluated the nature of the interaction between gabapentin and adenosine in formalin-induced nociception at the spinal level. Male Sprague-Dawley rats were prepared for intrathecal catheterization. Pain was evoked by injection of formalin solution (5%, 50 ”L) into the hindpaw. After examination of the effects of gabapentin and adenosine, the resulting interaction was investigated with isobolographic and fractional analyses. Neither gabapentin nor adenosine affected motor function. Gabapentin or adenosine decreased the sum of the number of flinches during phase 2, but not during phase 1 in the formalin test. Isobolographic analysis, in phase 2, revealed an additive interaction between gabapentin and adenosine. Taken together, intrathecal gabapentin and adenosine attenuated the facilitated state and interacted additively with each other
- âŠ