1,963 research outputs found

    Using probe electrospray ionization mass spectrometry and machine learning for detecting pancreatic cancer with high performance

    Get PDF
    A rapid blood-based diagnostic modality to detect pancreatic ductal adenocarcinoma (PDAC) with high accuracy is an unmet medical need. The study aimed to validate a unique diagnosis system using Probe Electrospray Ionization Mass Spectrometry (PESI-MS) and Machine Learning to the diagnosis of PDAC. Peripheral blood samples were collected from a total of 322 consecutive PDAC patients and 265 controls with a family history of PDAC. Five µl of serum samples were analyzed using PESI-MS system. The mass spectra from each specimen were then fed into machine learning algorithms to discriminate between control and cancer cases. A total of 587 serum samples were analyzed. The sensitivity of the machine learning algorithm using PESI-MS profiles to identify PDAC is 90.8% with specificity of 91.7% (95% CI 83.9%-97.4% and 82.8%-97.7% respectively). Combined PESI-MS profiles with age and CA19-9 as predictors, the accuracy for stage 1 or 2 of PDAC is 92.9% and for stage 3 or 4 is 93% (95% CI 86.3-98.2; 87.9-97.4 respectively). The accuracy and simplicity of the PESI-MS profiles combined with machine learning provide an opportunity to detect PDAC at an early stage and must be applicable to the examination of at-risk populations. [Abstract copyright: AJTR Copyright © 2020.

    Practical divergent synthesis of all possible regioisomers of myo-inositol trisphosphates

    Get PDF
    open119sciescopu

    Selective binding of Hpnl towards Ni(II) and Bi(III)

    Get PDF
    Poster-5Histidine-rich protein Hpn and histidine- and glutamine-rich protein Hpn-like (Hpnl) in Helicobacter pylori have been corroborated to be crucial to nickel homeostasis.[1-3] Nickel supply to hydrogenases and ureases might be disrupted owing to the interaction of metallodrugs, such as bismuth antiulcer drugs, with Hpnl, which may subsequently disturb the functions of the essential …postprin

    An Intergrated Approach for Matching Metals and Metallodrugs to Proteins

    Get PDF
    Keynote Lecture (Abstract)The effect of metals in biology effects is double-edged. Metal ions operate, on one hand, as cofactors for around 40% enzymes, on the other hand, they also exhibit toxic effects. Some metal ions, although being not essential, have been widely used in human healthcare as either therapeutic agents or diagnosis agents. To understand the molecular mechanism of a metallodrug, it is crucial to match metals to proteins at a proteome-wide scale [1,2]. We used an integrated approach consisting of gel electrophoresis and inductively coupled plasma mass spectrometry, LA-ICP-MS, IMAC and bioinformatic approach to identify metal-associated proteins using bismuth antiulcer drug as an example [3,4]. Using continuous-flow gel electrophoresis in combination with ICP-MS, we developed a comprehensive and robust strategy to readily identify metal-associated proteins as well as to quantify the metals for fast metallome/proteome-wide profiling of metal-binding proteins. At the same time, we have developed a tunable fluorescent method to visualize metalbinding proteins and histidine-rich proteins directly in cells. To match metals to proteins, we also established a bioinformatic method which allows potential metal-binding proteins both sequentially and spaciously to be searched [5-7]. Surprisingly, histidine-rich proteins and motifs(HRMs) are commonly found in proteins. We systematically analyzed the proteomes of 675 prokaryotes including 50 archaea and 625 bacteria for HRMs, and show that HRMs are extensively distributed in prokaryotic proteomes, with the majority (62%) of histidine-rich proteins (HRPs) being involved in metal homeostasis. Importantly, the occurrence of histidine-rich proteins (motifs) in the proteomes of prokaryotes is related to their habitats.published_or_final_versio

    Selective interaction of Hpn-like protein with nickel, zinc and bismuth in vitro and in cells by FRET

    Get PDF
    Hpn-like (Hpnl) is a unique histidine- and glutamine-rich protein found only in Helicobacter pylori and plays a role on nickel homeostasis.Weconstructed the fluorescent sensor proteins CYHpnl and CYHpnl_1-48 (C-terminal glutamine-rich region truncated) using enhanced cyan and yellow fluorescent proteins (eCFP and eYFP) as the donor–acceptor pair to monitor the interactions of Hpnl with metal ions and to elucidate the role of conserved Glu-rich sequence in Hpnl by fluorescence resonance energy transfer (FRET). CYHpnl and CYHpnl_1-48 exhibited largest responses towards Ni(II) and Zn(II) over other metals studied and the binding of Bi(III) to CYHpnl was observed in the presence of an excess amount of Bi(III) ions (Kd =115±4.8 μM). Moreover, both CYHpnl and CYHpnl_1-48 showed positive FRET responses towards the binding to Ni(II) and Zn(II) in Escherichia coli cells overexpressing CYHpnl and CYHpnl_1-48, whereas a decrease in FRET upon Bi(III)-binding in E. coli cells overexpressing the latter. Our study provides clear evidence on Hpnl binding to nickel in cells, and intracellular interaction of Hpnl with Bi(III) could disrupt the protein function, thus probably contributing to the efficacy of Bi(III) drugs against H. pylori.postprin

    Neuroprotective effects of minocycline on double-stranded RNA-induced neurotoxicity in cultured cortical neurons

    Get PDF
    1. Minocycline, memantine,and glycoconjugate were assessed for their ability to protect cultured primary cortical neurons against double-stranded RNA-induced neurotoxicity. 2. Minocycline but not memantine or glycoconjugate protected cultured cells and warrants further investigation.published_or_final_versio

    Integrative metallomic approach to identify metalloproteins in microbe

    Get PDF
    Plenary Lecture: PL-06postprin

    The Lysosomal Calcium Channel TRPML1 Maintains Mitochondrial Fitness in NK Cells through Interorganelle Cross-Talk

    Get PDF
    Cytotoxic lymphocytes eliminate cancer cells through the release of lytic granules, a specialized form of secretory lysosomes. This compartment is part of the pleomorphic endolysosomal system and is distinguished by its highly dynamic Ca2+ signaling machinery. Several transient receptor potential (TRP) calcium channels play essential roles in endolysosomal Ca2+ signaling and ensure the proper function of these organelles. In this study, we examined the role of TRPML1 (TRP cation channel, mucolipin subfamily, member 1) in regulating the homeostasis of secretory lysosomes and their cross-talk with mitochondria in human NK cells. We found that genetic deletion of TRPML1, which localizes to lysosomes in NK cells, led to mitochondrial fragmentation with evidence of collapsed mitochondrial cristae. Consequently, TRPML1-/- NK92 (NK92ML1-/-) displayed loss of mitochondrial membrane potential, increased reactive oxygen species stress, reduced ATP production, and compromised respiratory capacity. Using sensitive organelle-specific probes, we observed that mitochondria in NK92ML1-/- cells exhibited evidence of Ca2+ overload. Moreover, pharmacological activation of the TRPML1 channel in primary NK cells resulted in upregulation of LC3-II, whereas genetic deletion impeded autophagic flux and increased accumulation of dysfunctional mitochondria. Thus, TRPML1 impacts autophagy and clearance of damaged mitochondria. Taken together, these results suggest that an intimate interorganelle communication in NK cells is orchestrated by the lysosomal Ca2+ channel TRPML1
    corecore