70,386 research outputs found
Monte Carlo Algorithm for Simulating Reversible Aggregation of Multisite Particles
We present an efficient and exact Monte Carlo algorithm to simulate
reversible aggregation of particles with dedicated binding sites. This method
introduces a novel data structure of dynamic bond tree to record clusters and
sequences of bond formations. The algorithm achieves a constant time cost for
processing cluster association and a cost between and
for processing bond dissociation in clusters with bonds.
The algorithm is statistically exact and can reproduce results obtained by the
standard method. We applied the method to simulate a trivalent ligand and a
bivalent receptor clustering system and obtained an average scaling of
for processing bond dissociation in acyclic
aggregation, compared to a linear scaling with the cluster size in standard
methods. The algorithm also demands substantially less memory than the
conventional method.Comment: 8 pages, 3 figure
Microwave emission from snow and glacier ice
The microwave brightness temperature for snow fields was studied assuming that the snow cover consists of closely packed scattering spheres which do not interact coherently. The Mie scattering theory was used to compute the volume scattering albedo. It is shown that in the wavelength range from 0.8 to 2.8 cm, most of the micro-radiation emanates from a layer 10 meters or less in thickness. It is concluded that it is possible to determine snow accumulation rates as well as near-surface temperature
Shifting with
Precision measurements at the resonance agree well with the standard
model. However, there is still a hint of a discrepancy, not so much in by
itself (which has received a great deal of attention in the past several years)
but in the forward-backward asymmetry together with . The two
are of course correlated. We explore the possibilty that these and other
effects are due to the mixing of and with one or more heavy quarks.Comment: 11 pages, 1 Figure, LaTex fil
Crystal orientation and thickness dependence of superconductivity on tetragonal FeSe1-x thin films
Superconductivity was recently found in the simple tetragonal FeSe structure.
Recent studies suggest that FeSe is unconventional, with the symmetry of the
superconducting pairing state still under debate. To tackle these problems,
clean single crystals and thin films are required. Here we report the
fabrication of superconducting beta-phase FeSe1-x thin films on different
substrates using a pulsed laser deposition (PLD) technique. Quite
interestingly, the crystal orientation, and thus, superconductivity in these
thin films is sensitive to the growth temperature. At 320C, films grow
preferably along c-axis, but the onset of superconductivity depends on film
thickness. At 500C, films grow along (101), with little thickness dependence.
These results suggest that the low temperature structural deformation
previously found is crucial to the superconductivity of this material
Search for via the transition at LHCb and factory
It is interesting to study the characteristics of the whole family of
which contains two different heavy flavors. LHC and the proposed factory
provide an opportunity because a large database on the family will be
achieved. and its excited states can be identified via their decay modes.
As suggested by experimentalists, is not easy to be
clearly measured, instead, the trajectories of and occurring in
the decay of () can be unambiguously
identified, thus the measurement seems easier and more reliable, therefore this
mode is more favorable at early running stage of LHCb and the proposed
factory. In this work, we calculate the rate of
in terms of the QCD multipole-expansion and the numerical results indicate that
the experimental measurements with the luminosity of LHC and factory are
feasible.Comment: 12 pages, 1 figures and 4 tables, acceptted by SCIENCE CHINA Physics,
Mechanics & Astronomy (Science in China Series G
Measurement of the Dynamical Structure Factor of a 1D Interacting Fermi Gas
We present measurements of the dynamical structure factor of an
interacting one-dimensional (1D) Fermi gas for small excitation energies. We
use the two lowest hyperfine levels of the Li atom to form a
pseudo-spin-1/2 system whose s-wave interactions are tunable via a Feshbach
resonance. The atoms are confined to 1D by a two-dimensional optical lattice.
Bragg spectroscopy is used to measure a response of the gas to density
("charge") mode excitations at a momentum and frequency . The
spectrum is obtained by varying , while the angle between two laser
beams determines , which is fixed to be less than the Fermi momentum
. The measurements agree well with Tomonaga-Luttinger theory
Partition Function Zeros of a Restricted Potts Model on Lattice Strips and Effects of Boundary Conditions
We calculate the partition function of the -state Potts model
exactly for strips of the square and triangular lattices of various widths
and arbitrarily great lengths , with a variety of boundary
conditions, and with and restricted to satisfy conditions corresponding
to the ferromagnetic phase transition on the associated two-dimensional
lattices. From these calculations, in the limit , we determine
the continuous accumulation loci of the partition function zeros in
the and planes. Strips of the honeycomb lattice are also considered. We
discuss some general features of these loci.Comment: 12 pages, 12 figure
On the symbolic manipulation and code generation for elasto-plastic material matrices
A computerized procedure for symbolic manipulations and FORTRAN code generation of an elasto-plastic material matrix for finite element applications is presented. Special emphasis is placed on expression simplifications during intermediate derivations, optimal code generation, and interface with the main program. A systematic procedure is outlined to avoid redundant algebraic manipulations. Symbolic expressions of the derived material stiffness matrix are automatically converted to RATFOR code which is then translated into FORTRAN statements through a preprocessor. To minimize the interface problem with the main program, a template file is prepared so that the translated FORTRAN statements can be merged into the file to form a subroutine (or a submodule). Three constitutive models; namely, von Mises plasticity, Drucker-Prager model, and a concrete plasticity model, are used as illustrative examples
- …