8,505 research outputs found
Potential Targeting of Siglecs, Mast Cell Inhibitory Receptors, in Interstitial Cystitis
Mast cell increases and activation are detected in the chronic inflammatory bladder disease interstitial cystitis (IC), and their proinflammatory mediators are felt to contribute to regional pelvic pain and inflammatory pathophysiology. The immunoreceptor tyrosine-based inhibition motif-containing sialic acid-binding immunoglobulin-like lectins (Siglecs) expressed in mast cells could be evaluated as in vivo signaling regulators capable of inhibiting IC-related mast cell activation
Low energy proton-proton scattering in effective field theory
Low energy proton-proton scattering is studied in pionless effective field
theory. Employing the dimensional regularization and MS-bar and power
divergence subtraction schemes for loop calculation, we calculate the
scattering amplitude in 1S0 channel up to next-to-next-to leading order and fix
low-energy constants that appear in the amplitude by effective range
parameters. We study regularization scheme and scale dependence in separation
of Coulomb interaction from the scattering length and effective range for the
S-wave proton-proton scattering.Comment: 23 pages, 6 eps figures, revised considerably, accepted for
publication in Phys. Rev.
Suppression of electron spin decoherence of the diamond NV center by a transverse magnetic field
We demonstrate that the spin decoherence of nitrogen vacancy (NV) centers in
diamond can be suppressed by a transverse magnetic field if the electron spin
bath is the primary decoherence source. The NV spin coherence, created in "a
decoherence-free subspace" is protected by the transverse component of the
zero-field splitting, increasing the spin-coherence time about twofold. The
decoherence due to the electron spin bath is also suppressed at magnetic fields
stronger than ~25 gauss when applied parallel to the NV symmetry axis. Our
method can be used to extend the spin-coherence time of similar spin systems
for applications in quantum computing, field sensing, and other metrologies.Comment: 20 pages, 4 figure
Surface electronic structure of a topological Kondo insulator candidate SmB6: insights from high-resolution ARPES
The Kondo insulator SmB6 has long been known to exhibit low temperature (T <
10K) transport anomaly and has recently attracted attention as a new
topological insulator candidate. By combining low-temperature and high
energy-momentum resolution of the laser-based ARPES technique, for the first
time, we probe the surface electronic structure of the anomalous conductivity
regime. We observe that the bulk bands exhibit a Kondo gap of 14 meV and
identify in-gap low-lying states within a 4 meV window of the Fermi level on
the (001)-surface of this material. The low-lying states are found to form
electron-like Fermi surface pockets that enclose the X and the Gamma points of
the surface Brillouin zone. These states disappear as temperature is raised
above 15K in correspondence with the complete disappearance of the 2D
conductivity channels in SmB6. While the topological nature of the in-gap
metallic states cannot be ascertained without spin (spin-texture) measurements
our bulk and surface measurements carried out in the
transport-anomaly-temperature regime (T < 10K) are consistent with the
first-principle predicted Fermi surface behavior of a topological Kondo
insulator phase in this material.Comment: 4 Figures, 6 Page
Dark Energy in an Axion Model with Explicit Z(N) Symmetry Breaking
We point out that a well known axion model with an explicit Z(N) symmetry
breaking term predicts both dark energy and cold dark matter. We estimate the
parameters of this model which fit the observed densities of the dark
components of the universe. We find that the parameters do not conflict with
any observations.Comment: 5 pages, minor change
- …