79,989 research outputs found
On numerical integration and computer implementation of viscoplastic models
Due to the stringent design requirement for aerospace or nuclear structural components, considerable research interests have been generated on the development of constitutive models for representing the inelastic behavior of metals at elevated temperatures. In particular, a class of unified theories (or viscoplastic constitutive models) have been proposed to simulate material responses such as cyclic plasticity, rate sensitivity, creep deformations, strain hardening or softening, etc. This approach differs from the conventional creep and plasticity theory in that both the creep and plastic deformations are treated as unified time-dependent quantities. Although most of viscoplastic models give better material behavior representation, the associated constitutive differential equations have stiff regimes which present numerical difficulties in time-dependent analysis. In this connection, appropriate solution algorithm must be developed for viscoplastic analysis via finite element method
A computer program for predicting nonlinear uniaxial material responses using viscoplastic models
A computer program was developed for predicting nonlinear uniaxial material responses using viscoplastic constitutive models. Four specific models, i.e., those due to Miller, Walker, Krieg-Swearengen-Rhode, and Robinson, are included. Any other unified model is easily implemented into the program in the form of subroutines. Analysis features include stress-strain cycling, creep response, stress relaxation, thermomechanical fatigue loop, or any combination of these responses. An outline is given on the theoretical background of uniaxial constitutive models, analysis procedure, and numerical integration methods for solving the nonlinear constitutive equations. In addition, a discussion on the computer program implementation is also given. Finally, seven numerical examples are included to demonstrate the versatility of the computer program developed
Recommended from our members
Single-Shot Visualization Of Evolving Laser- Or Beam-Driven Plasma Wakefield Accelerators
We introduce Frequency-Domain Tomography (FDT) for visualizing sub-ps evolution of light-speed refractive index structures in a single shot. As a prototype demonstration, we produce single-shot tomographic movies of self-focusing, filamenting laser pulses propagating in a transparent Kerr medium. We then discuss how to adapt FDT to visualize evolving laser-or beam-driven plasma wakefields of current interest to the advanced accelerator community. For short (L similar to 1 cm), dense (n(e) similar to 10(19) cm(-3)) plasmas, the key challenge is broadening probe bandwidth sufficiently to resolve plasma-wavelength-size structures. For long (L similar to 10 to 100 cm), tenuous (n(e) similar to 10(17) cm(-3)) plasmas, probe diffraction from the evolving wake becomes the key challenge. We propose and analyze solutions to these challenges.Physic
- …