27,539 research outputs found

    Two-component model for the chemical evolution of the Galactic disk

    Get PDF
    In the present paper, we introduce a two-component model of the Galactic disk to investigate its chemical evolution. The formation of the thick and thin disks occur in two main accretion episodes with both infall rates to be Gaussian. Both the pre-thin and post-thin scenarios for the formation of the Galactic disk are considered. The best-fitting is obtained through χ2\chi^2-test between the models and the new observed metallicity distribution function of G dwarfs in the solar neighbourhood (Hou et al 1998). Our results show that post-thin disk scenario for the formation of the Galactic disk should be preferred. Still, other comparison between model predictions and observations are given.Comment: 23 pages, 7 figure

    Scalable Text and Link Analysis with Mixed-Topic Link Models

    Full text link
    Many data sets contain rich information about objects, as well as pairwise relations between them. For instance, in networks of websites, scientific papers, and other documents, each node has content consisting of a collection of words, as well as hyperlinks or citations to other nodes. In order to perform inference on such data sets, and make predictions and recommendations, it is useful to have models that are able to capture the processes which generate the text at each node and the links between them. In this paper, we combine classic ideas in topic modeling with a variant of the mixed-membership block model recently developed in the statistical physics community. The resulting model has the advantage that its parameters, including the mixture of topics of each document and the resulting overlapping communities, can be inferred with a simple and scalable expectation-maximization algorithm. We test our model on three data sets, performing unsupervised topic classification and link prediction. For both tasks, our model outperforms several existing state-of-the-art methods, achieving higher accuracy with significantly less computation, analyzing a data set with 1.3 million words and 44 thousand links in a few minutes.Comment: 11 pages, 4 figure

    Parallel Computing on a PC Cluster

    Get PDF
    The tremendous advance in computer technology in the past decade has made it possible to achieve the performance of a supercomputer on a very small budget. We have built a multi-CPU cluster of Pentium PC capable of parallel computations using the Message Passing Interface (MPI). We will discuss the configuration, performance, and application of the cluster to our work in physics.Comment: 3 pages, uses Latex and aipproc.cl

    Fast production of Bose-Einstein condensates of metastable Helium

    Full text link
    We report on the Bose-Einstein condensation of metastable Helium-4 atoms using a hybrid approach, consisting of a magnetic quadrupole and a crossed optical dipole trap. In our setup we cross the phase transition with 2x10^6 atoms, and we obtain pure condensates of 5x10^5 atoms in the optical trap. This novel approach to cooling Helium-4 provides enhanced cycle stability, large optical access to the atoms and results in production of a condensate every 6 seconds - a factor 3 faster than the state-of-the-art. This speed-up will dramatically reduce the data acquisition time needed for the measurement of many particle correlations, made possible by the ability of metastable Helium to be detected individually

    Querying cohesive subgraphs by keywords

    Full text link
    © 2018 IEEE. Keyword search problem has been widely studied to retrieve related substructures from graphs for a keyword set. However, existing well-studied approaches aim at finding compact trees/subgraphs containing the keywords, and ignore a critical measure, density, to reflect how strongly and stablely the keyword nodes are connected in the substructure. In this paper, we study the problem of finding a cohesive subgraph containing the query keywords based on the k-Truss model, and formulate it as minimal dense truss search problem, i.e., finding minimal subgraph with maximum trussness covering the keywords. We first propose an efficient algorithm to find the dense truss with the maximum trussness containing keywords based on a novel hybrid KT-Index (Keyword-Truss Index). Then, we develop a novel refinement approach to extract the minimal dense truss based on the anti-monotonicity property of k-Truss. Experimental studies on real datasets show the outperformance of our method

    Thermodynamic properties of tetrameric bond-alternating spin chains

    Full text link
    Thermodynamic properties of a tetrameric bond-alternating Heisenberg spin chain with ferromagnetic-ferromagnetic-antiferromagnetic-antiferromagnetic exchange interactions are studied using the transfer-matrix renormalization group and compared to experimental measurements. The temperature dependence of the uniform susceptibility exhibits typical ferrimagnetic features. Both the uniform and staggered magnetic susceptibilities diverge in the limit T→0T\to 0, indicating that the ground state has both ferromagnetic and antiferromagnetic long-range orders. A double-peak structure appears in the temperature dependence of the specific heat. Our numerical calculation gives a good account for the temperature and field dependence of the susceptibility, the magnetization, and the specific heat for Cu(3-Clpy)2_{2}(N3_{3})2_{2} (3-Clpy=3-Chloroyridine).Comment: 8 pages, 12 figures; Replaced with final version accepted in Phys. Rev.

    Raman spectroscopic determination of the length, strength, compressibility, Debye temperature, elasticity, and force constant of the C-C bond in graphene

    Full text link
    From the perspective of bond relaxation and vibration, we have reconciled the Raman shifts of graphene under the stimuli of the number-of-layer, uni-axial-strain, pressure, and temperature in terms of the response of the length and strength of the representative bond of the entire specimen to the applied stimuli. Theoretical unification of the measurements clarifies that: (i) the opposite trends of Raman shifts due to number-of-layer reduction indicate that the G-peak shift is dominated by the vibration of a pair of atoms while the D- and the 2D-peak shifts involves z-neighbor of a specific atom; (ii) the tensile strain-induced phonon softening and phonon-band splitting arise from the asymmetric response of the C3v bond geometry to the C2v uni-axial bond elongation; (iii) the thermal-softening of the phonons originates from bond expansion and weakening; and (iv) the pressure- stiffening of the phonons results from bond compression and work hardening. Reproduction of the measurements has led to quantitative information about the referential frequencies from which the Raman frequencies shift, the length, energy, force constant, Debye temperature, compressibility, elastic modulus of the C-C bond in graphene, which is of instrumental importance to the understanding of the unusual behavior of graphene
    • …
    corecore