2 research outputs found

    Lawson criterion for ignition exceeded in an inertial fusion experiment

    Get PDF
    For more than half a century, researchers around the world have been engaged in attempts to achieve fusion ignition as a proof of principle of various fusion concepts. Following the Lawson criterion, an ignited plasma is one where the fusion heating power is high enough to overcome all the physical processes that cool the fusion plasma, creating a positive thermodynamic feedback loop with rapidly increasing temperature. In inertially confined fusion, ignition is a state where the fusion plasma can begin "burn propagation" into surrounding cold fuel, enabling the possibility of high energy gain. While "scientific breakeven" (i.e., unity target gain) has not yet been achieved (here target gain is 0.72, 1.37 MJ of fusion for 1.92 MJ of laser energy), this Letter reports the first controlled fusion experiment, using laser indirect drive, on the National Ignition Facility to produce capsule gain (here 5.8) and reach ignition by nine different formulations of the Lawson criterion

    Plasma–catalysis: the known knowns, the known unknowns and the unknown unknowns

    No full text
    This review describes the history and development of plasma-assisted catalysis focussing mainly on the use of atmospheric pressure, non-thermal plasma. It identifies the various interactions between the plasma and the catalyst that can modify and activate the catalytic surface and also describes how the catalyst affects the properties of the discharge. Techniques for in situ diagnostics of species adsorbed onto the surface and present in the gas-phase over a range of timescales are described. The effect of temperature on plasma-catalysis can assist in determining differences between thermal catalysis and plasma-activated catalysis and focuses on the meaning of temperature in a system involving non-equilibrium plasma. It can also help to develop an understanding of the gas-phase and surface mechanism of the plasma-catalysis at a molecular level. Our current state of knowledge and ignorance is highlighted and future directions suggested.</p
    corecore