61,039 research outputs found

    Acyclic orientations on the Sierpinski gasket

    Full text link
    We study the number of acyclic orientations on the generalized two-dimensional Sierpinski gasket SG2,b(n)SG_{2,b}(n) at stage nn with bb equal to two and three, and determine the asymptotic behaviors. We also derive upper bounds for the asymptotic growth constants for SG2,bSG_{2,b} and dd-dimensional Sierpinski gasket SGdSG_d.Comment: 20 pages, 8 figures and 6 table

    Some Exact Results for Spanning Trees on Lattices

    Full text link
    For nn-vertex, dd-dimensional lattices Λ\Lambda with d2d \ge 2, the number of spanning trees NST(Λ)N_{ST}(\Lambda) grows asymptotically as exp(nzΛ)\exp(n z_\Lambda) in the thermodynamic limit. We present an exact closed-form result for the asymptotic growth constant zbcc(d)z_{bcc(d)} for spanning trees on the dd-dimensional body-centered cubic lattice. We also give an exact integral expression for zfccz_{fcc} on the face-centered cubic lattice and an exact closed-form expression for z488z_{488} on the 4884 \cdot 8 \cdot 8 lattice.Comment: 7 pages, 1 tabl

    Maximally Localized States in Quantum Mechanics with a Modified Commutation Relation to All Orders

    Full text link
    We construct the states of maximal localization taking into account a modification of the commutation relation between position and momentum operators to all orders of the minimum length parameter. To first order, the algebra we use reproduces the one proposed by Kempft, Mangano and Mann. It is emphasized that a minimal length acts as a natural regulator for the theory, thus eliminating the otherwise ever appearing infinities. So, we use our results to calculate the first correction to the Casimir Effect due to the minimal length. We also discuss some of the physical consequences of the existence of a minimal length, culminating in a proposal to reformulate the very concept of "position measurement"

    Conservation of connectivity of model-space effective interactions under a class of similarity transformation

    Full text link
    Effective interaction operators usually act on a restricted model space and give the same energies (for Hamiltonian) and matrix elements (for transition operators etc.) as those of the original operators between the corresponding true eigenstates. Various types of effective operators are possible. Those well defined effective operators have been shown being related to each other by similarity transformation. Some of the effective operators have been shown to have connected-diagram expansions. It is shown in this paper that under a class of very general similarity transformations, the connectivity is conserved. The similarity transformation between hermitian and non-hermitian Rayleigh-Schr\"{o}dinger perturbative effective operators is one of such transformation and hence the connectivity can be deducted from each other.Comment: 12 preprint page

    A heavy Higgs boson from flavor and electroweak symmetry breaking unification

    Full text link
    We present a unified picture of flavor and electroweak symmetry breaking based on a nonlinear sigma model spontaneously broken at the TeV scale. Flavor and Higgs bosons arise as pseudo-Goldstone modes. Explicit collective symmetry breaking yields stable vacuum expectation values and masses protected at one loop by the little-Higgs mechanism. The coupling to the fermions generates well-definite mass textures--according to a U(1) global flavor symmetry--that correctly reproduce the mass hierarchies and mixings of quarks and leptons. The model is more constrained than usual little-Higgs models because of bounds on weak and flavor physics. The main experimental signatures testable at the LHC are a rather large mass m_{h^0} = 317\pm 80 GeV for the (lightest) Higgs boson and a characteristic spectrum of new bosons and fermions at the TeV scale.Comment: 5 page

    Confined magnetic guiding orbit states

    Full text link
    We show how snake-orbit states which run along a magnetic edge can be confined electrically. We consider a two-dimensional electron gas (2DEG) confined into a quantum wire, subjected to a strong perpendicular and steplike magnetic field B/BB/-B. Close to this magnetic step new, spatially confined bound states arise as a result of the lateral confinement and the magnetic field step. The number of states, with energy below the first Landau level, increases as BB becomes stronger or as the wire width becomes larger. These bound states can be understood as an interference between two counter-propagating one-dimensional snake-orbit states.Comment: 4 pages, 4 figure
    corecore