1,067 research outputs found

    On the Possibility of Optical Unification in Heterotic Strings

    Get PDF
    Recently J. Giedt discussed a mechanism, entitled optical unification, whereby string scale unification is facilitated via exotic matter with intermediate scale mass. This mechanism guarantees that a virtual MSSM unification below the string scale is extrapolated from the running of gauge couplings upward from M_Z^o when an intermediate scale desert is assumed. In this letter we explore the possibility of optical unification within the context of weakly coupled heterotic strings. In particular, we investigate this for models of free fermionic construction containing the NAHE set of basis vectors. This class is of particular interest for optical unification, because it provides a standard hypercharge embedding within SO(10), giving the standard k_Y = 5/3 hypercharge level, which was shown necessary for optical unification. We present a NAHE model for which the set of exotic SU(3)_C triplet/anti-triplet pairs, SU(2)_L doublets, and non-Abelian singlets with hypercharge offers the possibility of optical unification. Whether this model can realize optical unification is conditional upon these exotics not receiving Fayet-Iliopoulos (FI) scale masses when a flat direction of scalar vacuum expectation values is non-perturbatively chosen to cancel the FI D-term, xi, generated by the anomalous U(1)-breaking Green-Schwarz-Dine-Seiberg-Wittten mechanism. A study of perturbative flat directions and their phenomenological implications for this model is underway. This paper is a product of the NFS Research Experiences for Undergraduates and the NSF High School Summer Science Research programs at Baylor University.Comment: 16 pages. Standard Late

    Universal upper limit on inflation energy scale from cosmic magnetic field

    Full text link
    Recently observational lower bounds on the strength of cosmic magnetic fields were reported, based on gamma-ray flux from distant blazars. If inflation is responsible for the generation of such magnetic fields then the inflation energy scale is bounded from above as rho_{inf}^{1/4} < 2.5 times 10^{-7}M_{Pl} times (B_{obs}/10^{-15}G)^{-2} in a wide class of inflationary magnetogenesis models, where B_{obs} is the observed strength of cosmic magnetic fields. The tensor-to-scalar ratio is correspondingly constrained as r< 10^{-19} times (B_{obs}/10^{-15}G)^{-8}. Therefore, if the reported strength B_{obs} \geq 10^{-15}G is confirmed and if any signatures of gravitational waves from inflation are detected in the near future, then our result indicates some tensions between inflationary magnetogenesis and observations.Comment: 12pages, v2: several discussions and references added, version accepted for publication by JCA

    A "Littlest Higgs" Model with Custodial SU(2) Symmetry

    Full text link
    In this note, a ``littlest higgs'' model is presented which has an approximate custodial SU(2) symmetry. The model is based on the coset space SO(9)/(SO(5)Ă—SO(4))SO(9)/(SO(5)\times SO(4)). The light pseudo-goldstone bosons of the theory include a {\it single} higgs doublet below a TeV and a set of three SU(2)WSU(2)_W triplets and an electroweak singlet in the TeV range. All of these scalars obtain approximately custodial SU(2) preserving vacuum expectation values. This model addresses a defect in the earlier SO(5)Ă—SU(2)Ă—U(1)SO(5)\times SU(2)\times U(1) moose model, with the only extra complication being an extended top sector. Some of the precision electroweak observables are computed and do not deviate appreciably from Standard Model predictions. In an S-T oblique analysis, the dominant non-Standard Model contributions are the extended top sector and higgs doublet contributions. In conclusion, a wide range of higgs masses is allowed in a large region of parameter space consistent with naturalness, where large higgs masses requires some mild custodial SU(2) violation from the extended top sector.Comment: 22 pages + 8 figures; JHEP style, added references and extra discussion on size of T contributions, as well as some other minor clarifications. Version to appear in JHE

    Conserved miRNAs are candidate post-transcriptional regulators of developmental arrest in free-living and parasitic nematodes

    Get PDF
    Animal development is complex yet surprisingly robust. Animals may develop alternative phenotypes conditional on environmental changes. Under unfavorableconditions C. elegans larvae enter the dauer stage, a developmentally arrested, long-lived, and stress-resistant state. Dauer larvae of free-living nematodes and infective larvae of parasitic nematodes share many traits including a conserved endocrine signaling module (DAF/DAF-12), which is essential for the formation of dauer and infective larvae. We speculated that conserved post-transcriptional regulatory mechanism might also be involved in executing the dauer and infective larvae fate. We used an unbiased sequencing strategy to characterize the miRNA gene complement in C. elegans, P.pacificus, and S. ratti. Our study raised the number of described miRNA genes to 257 for C. elegans, tripled the known gene set for P. pacificus to 362 miRNAs and is the first to describe miRNAs in a Strongyloides parasite. Moreover, we found a limited core set of 24 conserved miRNA families in all three species. Interestingly, our estimated expression fold changes between dauer vs. non-dauer stages and infective larvae vs. free-living stages reveal that despite the speed of miRNA gene set evolution in nematodes, homologous gene families with conserved 'dauer-infective' expression signatures are present. These findings suggest that common post-transcriptional regulatory mechanisms are at work and that the same miRNA families play important roles in developmental arrest as well as long-term survival in free-living and parasitic nematodes

    Gene expression and methylation signatures of MAN2C1 are associated with PTSD

    Get PDF
    As potential regulators of DNA accessibility and activity, epigenetic modifications offer a mechanism by which the environment can moderate the effects of genes. To date, however, there have been relatively few studies assessing epigenetic modifications associated with post-traumatic stress disorder (PTSD). Here we investigate PTSD-associated methylation differences in 33 genes previously shown to differ in whole blood-derived gene expression levels between those with vs. without the disorder. Drawing on DNA samples similarly obtained from whole blood in 100 individuals, 23 with and 77 without lifetime PTSD, we used methylation microarray data to assess whether these 33 candidate genes showed epigenetic signatures indicative of increased risk for, or resilience to, PTSD. Logistic regression analyses were performed to assess the main and interacting effects of candidate genes' methylation values and number of potentially traumatic events (PTEs), adjusting for age and other covariates. Results revealed that only one candidate gene-MAN2C1}-showed a significant methylation x PTE interaction, such that those with both higher MAN2C1 methylation and greater exposure to PTEs showed a marked increase in risk of lifetime PTSD (OR 4.35, 95% CI: 1.07, 17.77, p=0.04). These results indicate that MAN2C1 methylation levels modify cumulative traumatic burden on risk of PTSD, and suggest that both gene expression and epigenetic changes at specific loci are associated with this disorder

    Precision Electroweak Observables in the Minimal Moose Little Higgs Model

    Full text link
    Little Higgs theories, in which the Higgs particle is realized as the pseudo-Goldstone boson of an approximate global chiral symmetry have generated much interest as possible alternatives to weak scale supersymmetry. In this paper we analyze precision electroweak observables in the Minimal Moose model and find that in order to be consistent with current experimental bounds, the gauge structure of this theory needs to be modified. We then look for viable regions of parameter space in the modified theory by calculating the various contributions to the S and T parameters.Comment: v2: 17 pages, 9 figures. Typeset in JHEP style. Added a references and two figures showing parameter space for each of two reference points. Corrected typo

    CP Violation in Supersymmetric U(1)' Models

    Full text link
    The supersymmetric CP problem is studied within superstring-motivated extensions of the MSSM with an additional U(1)' gauge symmetry broken at the TeV scale. This class of models offers an attractive solution to the mu problem of the MSSM, in which U(1)' gauge invariance forbids the bare mu term, but an effective mu parameter is generated by the vacuum expectation value of a Standard Model singlet S which has superpotential coupling of the form SH_uH_d to the electroweak Higgs doublets. The effective mu parameter is thus dynamically determined as a function of the soft supersymmetry breaking parameters, and can be complex if the soft parameters have nontrivial CP-violating phases. We examine the phenomenological constraints on the reparameterization invariant phase combinations within this framework, and find that the supersymmetric CP problem can be greatly alleviated in models in which the phase of the SU(2) gaugino mass parameter is aligned with the soft trilinear scalar mass parameter associated with the SH_uH_d coupling. We also study how the phases filter into the Higgs sector, and find that while the Higgs sector conserves CP at the renormalizable level to all orders of perturbation theory, CP violation can enter at the nonrenormalizable level at one-loop order. In the majority of the parameter space, the lightest Higgs boson remains essentially CP even but the heavier Higgs bosons can exhibit large CP-violating mixings, similar to the CP-violating MSSM with large mu parameter.Comment: 29 pp, 3 figs, 2 table

    A Composite Little Higgs Model

    Full text link
    We describe a natural UV complete theory with a composite little Higgs. Below a TeV we have the minimal Standard Model with a light Higgs, and an extra neutral scalar. At the TeV scale there are additional scalars, gauge bosons, and vector-like charge 2/3 quarks, whose couplings to the Higgs greatly reduce the UV sensitivity of the Higgs potential. Stabilization of the Higgs mass squared parameter, without finetuning, occurs due to a softly broken shift symmetry--the Higgs is a pseudo Nambu-Goldstone boson. Above the 10 TeV scale the theory has new strongly coupled interactions. A perturbatively renormalizable UV completion, with softly broken supersymmetry at 10 TeV is explicitly worked out. Our theory contains new particles which are odd under an exact "dark matter parity", (-1)^{(2S+3B+L)}. We argue that such a parity is likely to be a feature of many theories of new TeV scale physics. The lightest parity odd particle, or "LPOP", is most likely a neutral fermion, and may make a good dark matter candidate, with similar experimental signatures to the neutralino of the MSSM. We give a general effective field theory analysis of the calculation of corrections to precision electroweak observables.Comment: 28 page

    Skyrmion Excitation in Two-Dimensional Spinor Bose-Einstein Condensate

    Full text link
    We study the properties of coreless vortices(skyrmion) in spinor Bose-Einstein condensate. We find that this excitation is always energetically unstable, it always decays to an uniform spin texture. We obtain the skyrmion energy as a function of its size and position, a key quantity in understanding the decay process. We also point out that the decay rate of a skyrmion with high winding number will be slower. The interaction between skyrmions and other excitation modes are also discussed.Comment: 5 pages, 4 figures, final version published in Phys. Rev.

    Dynamic transition in driven vortices across the peak effect in superconductors

    Full text link
    We study the zero-temperature dynamic transition from the disordered flow to an ordered flow state in driven vortices in type-II superconductors. The transition current IpI_{p} is marked by a sharp kink in the V(I)V(I) characteristic with a concomitant large increase in the defect concentration. On increasing magnetic field BB, the Ip(B)I_{p}(B) follows the behaviour of the critical current Ic(B)I_{c}(B). Specifically, in the peak effect regime Ip(B)I_{p}(B) increases rapidly along with IcI_{c}. We also discuss the effect of varying disorder strength on IpI_{p}.Comment: 4 pages, 4 figure
    • …
    corecore