4,353 research outputs found

    Dynamics of fullerene coalescence

    Full text link
    Fullerene coalescence experimentally found in fullerene-embedded single-wall nanotubes under electron-beam irradiation or heat treatment is simulated by minimizing the classical action for many atom systems. The dynamical trajectory for forming a (5,5) C120_{120} nanocapsule from two C60_{60} fullerene molecules consists of thermal motions around potential basins and ten successive Stone-Wales-type bond rotations after the initial cage-opening process for which energy cost is about 8 eV. Dynamical paths for forming large-diameter nanocapsules with (10,0), (6,6), and (12,0) chiral indexes have more bond rotations than 25 with the transition barriers in a range of 10--12 eV.Comment: 4 pages, 2 figures, 1 supplementary movie at http://dielc.kaist.ac.kr/yonghyun/coal.mpeg. To be published in Physical Review Letter

    Correlation between 3:2 QPO pairs and Jets in Black Hole X-ray Binaries

    Full text link
    We argue, following our earlier works (the "CEBZMC model"), that the phenomenon of twin peak high frequency quasi-periodic oscillations (QPOs) observed in black hole X-ray binaries is caused by magnetic coupling (MC) between accretion disk and black hole (BH). Due to MC, two bright spots occur at two separate radial locations r_{in} and r_{out} at the disk surface, energized by a kind of the Blandford-Znajek mechanism (BZ). We assume, following the Kluzniak-Abramowicz QPO resonance model, that Keplerian frequencies at these two locations are in the 3:2 ratio. With this assumption, we estimate the BH spins in several sources, including GRO J1655-40, GRS 1915+105, XTE J1550-564, H1743-322 and Sgr A*. We give an interpretation of the "jet line" in the hardness-intensity plane discussing the parameter space consisting of the BH spin and the power-law index for the variation of the large-scale magnetic field in the disk. Furthermore, we propose a new scenario for the spectral state transitions in BH X-ray binaries based on fluctuation in densities of accreting plasma from a companion star.Comment: 17 pages, 6 figures, accepted by AP

    Using Energy Conditions to Distinguish Brane Models and Study Brane Matter

    Full text link
    Current universe (assumed here to be normal matter on the brane) is pressureless from observations. In this case the energy condition is ρ00\rho_0\geq0 and p0=0p_0=0. By using this condition, brane models can be distinguished. Then, assuming arbitrary component of matter in DGP model, we use four known energy conditions to study the matter on the brane. If there is nonnormal matter or energy (for example dark energy with w<1/3w<-1/3) on the brane, the universe is accelerated.Comment: 5pages, no figures; Accepted by Communications in Theoretical Physic

    Perspective of monochromatic gamma-ray line detection with the High Energy cosmic-Radiation Detection (HERD) facility onboard China's Space Station

    Full text link
    HERD is the High Energy cosmic-Radiation Detection instrument proposed to operate onboard China's space station in the 2020s. It is designed to detect energetic cosmic ray nuclei, leptons and photons with a high energy resolution (1%\sim1\% for electrons and photons and 20%20\% for nuclei) and a large geometry factor (>3m2sr>3\,{ m^2\,sr} for electrons and diffuse photons and >2m2sr>2\,{ m^2\,sr} for nuclei). In this work we discuss the capability of HERD to detect monochromatic γ\gamma-ray lines, based on simulations of the detector performance. It is shown that HERD will be one of the most sensitive instruments for monochromatic γ\gamma-ray searches at energies between 10\sim10 to a few hundred GeV. Above hundreds of GeV, Cherenkov telescopes will be more sensitive due to their large effective area. As a specific example, we show that a good portion of the parameter space of a supersymmetric dark matter model can be probed with HERD.Comment: 9 pages, 7 figures, matches version published in Astropart.Phy

    Isotropic three-dimensional gap in the iron-arsenide superconductor LiFeAs from directional heat transport measurements

    Full text link
    The thermal conductivity k of the iron-arsenide superconductor LiFeAs (Tc ~ 18K) was measured in single crystals at temperatures down to T~50mK and in magnetic fields up to H=17T, very close to the upper critical field Hc2~18T. For both directions of the heat current, parallel and perpendicular to the tetragonal c-axis, a negligible residual linear term k/T is found as T ->0, revealing that there are no zero-energy quasiparticles in the superconducting state. The increase in k with magnetic field is the same for both current directions and it follows closely the dependence expected for an isotropic superconducting gap. There is no evidence of multi-band character, whereby the gap would be different on different Fermi-surface sheets. These findings show that the superconducting gap in LiFeAs is isotropic in 3D, without nodes or deep minima anywhere on the Fermi surface. Comparison with other iron-pnictide superconductors suggests that a nodeless isotropic gap is a common feature at optimal doping (maximal Tc).Comment: 4 pages, 3 figure

    Anti-malarial drug artesunate restores metabolic changes in experimental allergic asthma

    Get PDF
    The anti-malarial drug artesunate possesses anti-inflammatory and anti-oxidative actions in experimental asthma, comparable to corticosteroid. We hypothesized that artesunate may modulate disease-relevant metabolic alterations in allergic asthma. To explore metabolic profile changes induced by artesunate in allergic airway inflammation, we analysed bronchoalveolar lavage fluid (BALF) and serum from naïve and ovalbumin-induced asthma mice treated with artesunate, using both gas and liquid chromatography-mass spectrometry metabolomics. Pharmacokinetics analyses of serum and lung tissues revealed that artesunate is rapidly converted into the active metabolite dihydroartemisinin. Artesunate effectively suppressed BALF total and differential counts, and repressed BALF Th2 cytokines, IL-17, IL-12(p40), MCP-1 and G-CSF levels. Artesunate had no effects on both BALF and serum metabolome in naïve mice. Artesunate promoted restoration of BALF sterols (cholesterol, cholic acid and cortol), phosphatidylcholines and carbohydrates (arabinose, mannose and galactose) and of serum 18-oxocortisol, galactose, glucose and glucouronic acid in asthma. Artesunate prevented OVA-induced increases in pro-inflammatory metabolites from arginine–proline metabolic pathway, particularly BALF levels of urea and alanine and serum levels of urea, proline, valine and homoserine. Multiple statistical correlation analyses revealed association between altered BALF and serum metabolites and inflammatory cytokines. Dexamethasone failed to reduce urea level and caused widespread changes in metabolites irrelevant to asthma development. Here we report the first metabolome profile of artesunate treatment in experimental asthma. Artesunate restored specific metabolic perturbations in airway inflammation, which correlated well with its anti-inflammatory actions. Our metabolomics findings further strengthen the therapeutic value of using artesunate to treat allergic asthma

    Note on Generalized Janus Configurations

    Full text link
    We study several aspects of generalized Janus configuration, which includes a theta term. We investigate the vacuum structure of the theory and find that unlike the Janus configuration without theta term there is no nontrivial vacuum. We also discuss BPS soliton configuration both by supersymmetry analysis and from energy functional. The half BPS configurations could be realized by introducing transverse (p,q)-strings in original brane configuration corresponding to generalized Janus configuration. It turns out the BPS soliton could be taken as modified dyon. We discuss the solution of half BPS equations for the sharp interface case. Moreover we construct less supersymmetric Janus configuration with theta term.Comment: 27 pages; References adde

    Localized electronic states induced by defects and possible origin of ferroelectricity in strontium titanate thin films

    Full text link
    Several defect configurations including oxygen vacancies have been investigated as possible origins of the reported room-temperature ferroelectricity of strontium titanate (STO) thin films [Appl. Phys. Letts. 91, 042908 (2007)]. First-principles calculations revealed that the Sr-O-O vacancy complexes create deep localized states in the band gap of SrTiO3 without affecting its insulating property. These results are in agreement with electronic structural changes determined from optical transmission and X-ray absorption measurements. This work opens the way to exploiting oxygen vacancies and their complexes as a source of ferroelectricity in perovskite oxide thin films, including STO
    corecore