204 research outputs found

    Abnormality Detection in Mammography using Deep Convolutional Neural Networks

    Full text link
    Breast cancer is the most common cancer in women worldwide. The most common screening technology is mammography. To reduce the cost and workload of radiologists, we propose a computer aided detection approach for classifying and localizing calcifications and masses in mammogram images. To improve on conventional approaches, we apply deep convolutional neural networks (CNN) for automatic feature learning and classifier building. In computer-aided mammography, deep CNN classifiers cannot be trained directly on full mammogram images because of the loss of image details from resizing at input layers. Instead, our classifiers are trained on labelled image patches and then adapted to work on full mammogram images for localizing the abnormalities. State-of-the-art deep convolutional neural networks are compared on their performance of classifying the abnormalities. Experimental results indicate that VGGNet receives the best overall accuracy at 92.53\% in classifications. For localizing abnormalities, ResNet is selected for computing class activation maps because it is ready to be deployed without structural change or further training. Our approach demonstrates that deep convolutional neural network classifiers have remarkable localization capabilities despite no supervision on the location of abnormalities is provided.Comment: 6 page

    Spin gap and magnetic resonance in superconducting BaFe1.9_{1.9}Ni%_{0.1}As2_{2}

    Full text link
    We use neutron spectroscopy to determine the nature of the magnetic excitations in superconducting BaFe1.9_{1.9}Ni0.1_{0.1}As2_{2} (Tc=20T_{c}=20 K). Above TcT_{c} the excitations are gapless and centered at the commensurate antiferromagnetic wave vector of the parent compound, while the intensity exhibits a sinusoidal modulation along the c-axis. As the superconducting state is entered a spin gap gradually opens, whose magnitude tracks the TT-dependence of the superconducting gap observed by angle resolved photoemission. Both the spin gap and magnetic resonance energies are temperature \textit{and} wave vector dependent, but their ratio is the same within uncertainties. These results suggest that the spin resonance is a singlet-triplet excitation related to electron pairing and superconductivity.Comment: 4 pages, 4 figure

    Bending invariant meshes and application to groupwise correspondences

    Get PDF
    We introduce a new bending invariant representation of a triangular mesh S. The bending invariant mesh X of S is a deformation of S that has the property that the geodesic distance between each pair of vertices on S is approximated well by the Euclidean distance between the corresponding vertices on X. Furthermore, X is intersection-free. The main advantage of the bending invariant mesh compared to previous approaches is that mesh-based features on X can be used to facilitate applications such as shape recognition or shape registration. We apply bending invariant meshes to find dense point-to-point correspondences between a number of deformed surfaces corresponding to different postures of the same non-rigid object in a fully automatic way. 1

    Spinal nerve segmentation method and dataset construction in endoscopic surgical scenarios

    Full text link
    Endoscopic surgery is currently an important treatment method in the field of spinal surgery and avoiding damage to the spinal nerves through video guidance is a key challenge. This paper presents the first real-time segmentation method for spinal nerves in endoscopic surgery, which provides crucial navigational information for surgeons. A finely annotated segmentation dataset of approximately 10,000 consec-utive frames recorded during surgery is constructed for the first time for this field, addressing the problem of semantic segmentation. Based on this dataset, we propose FUnet (Frame-Unet), which achieves state-of-the-art performance by utilizing inter-frame information and self-attention mechanisms. We also conduct extended exper-iments on a similar polyp endoscopy video dataset and show that the model has good generalization ability with advantageous performance. The dataset and code of this work are presented at: https://github.com/zzzzzzpc/FUnet .Comment: Accepted by MICCAI 202
    • …
    corecore