95,825 research outputs found
Microwave emission from dry and wet snow
A microscopic model was developed to study the microwave emission from snow. In this model, the individual snow particles are considered to be the scattering centers. Mie scattering theory for spherical particles is then used to compute the volume scattering and extinction coefficients of the closely packed scattering spheres, which are assumed not to interact coherently. The results of the computations show significant volume scattering effects in the microwave region which result in low observed emissivities from cold, dry snow. In the case of wet snow, the microwave emissivities are increased considerably, in agreement with earlier experimental observations in which the brightness temperatures have increased significantly at the onset of melting
Structure of the Partition Function and Transfer Matrices for the Potts Model in a Magnetic Field on Lattice Strips
We determine the general structure of the partition function of the -state
Potts model in an external magnetic field, for arbitrary ,
temperature variable , and magnetic field variable , on cyclic, M\"obius,
and free strip graphs of the square (sq), triangular (tri), and honeycomb
(hc) lattices with width and arbitrarily great length . For the
cyclic case we prove that the partition function has the form ,
where denotes the lattice type, are specified
polynomials of degree in , is the corresponding
transfer matrix, and () for ,
respectively. An analogous formula is given for M\"obius strips, while only
appears for free strips. We exhibit a method for
calculating for arbitrary and give illustrative
examples. Explicit results for arbitrary are presented for
with and . We find very simple formulas
for the determinant . We also give results for
self-dual cyclic strips of the square lattice.Comment: Reference added to a relevant paper by F. Y. W
Turbulence Time Series Data Hole Filling using Karhunen-Loeve and ARIMA methods
Measurements of optical turbulence time series data using unattended
instruments over long time intervals inevitably lead to data drop-outs or
degraded signals. We present a comparison of methods using both Principal
Component Analysis, which is also known as the Karhunen--Loeve decomposition,
and ARIMA that seek to correct for these event-induced and mechanically-induced
signal drop-outs and degradations. We report on the quality of the correction
by examining the Intrinsic Mode Functions generated by Empirical Mode
Decomposition. The data studied are optical turbulence parameter time series
from a commercial long path length optical anemometer/scintillometer, measured
over several hundred metres in outdoor environments.Comment: 8 pages, 9 figures, submitted to ICOLAD 2007, City University,
London, U
Two-terminal monolithic InP-based tandem solar cells with tunneling intercell ohmic connections
A monolithic two-terminal InP/InGaAsP tandem solar cell was successfully fabricated. This tandem solar cell consists of a p/n InP homojunction top subcell and a 0.95 eV p/n InGaAsP homojunction bottom subcell. A patterned 0.95 eV n(+)/p(+) InGaAsP tunnel diode was employed as an intercell ohmic connection. The solar cell structure was prepared by two-step liquid phase epitaxial growth. Under one sun, AM1.5 global illumination, the best tandem cell delivered a conversion efficiency of 14.8 pct
Computational structures for robotic computations
The computational problem of inverse kinematics and inverse dynamics of robot manipulators by taking advantage of parallelism and pipelining architectures is discussed. For the computation of inverse kinematic position solution, a maximum pipelined CORDIC architecture has been designed based on a functional decomposition of the closed-form joint equations. For the inverse dynamics computation, an efficient p-fold parallel algorithm to overcome the recurrence problem of the Newton-Euler equations of motion to achieve the time lower bound of O(log sub 2 n) has also been developed
Fitting Precision Electroweak Data with Exotic Heavy Quarks
The 1999 precision electroweak data from LEP and SLC persist in showing some
slight discrepancies from the assumed standard model, mostly regarding and
quarks. We show how their mixing with exotic heavy quarks could result in a
more consistent fit of all the data, including two unconventional
interpretations of the top quark.Comment: 7 pages, no figure, 2 typos corrected, 1 reference update
Reptile scale paradigm: Evo-Devo, pattern formation and regeneration
The purpose of this perspective is to highlight the merit of the reptile integument as an experimental model. Reptiles represent the first amniotes. From stem reptiles, extant reptiles, birds and mammals have evolved. Mammal hairs and feathers evolved from Therapsid and Sauropsid reptiles, respectively. The early reptilian integument had to adapt to the challenges of terrestrial life, developing a multi-layered stratum corneum capable of barrier function and ultraviolet protection. For better mechanical protection, diverse reptilian scale types have evolved. The evolution of endothermy has driven the convergent evolution of hair and feather follicles: both form multiple localized growth units with stem cells and transient amplifying cells protected in the proximal follicle. This topological arrangement allows them to elongate, molt and regenerate without structural constraints. Another unique feature of reptile skin is the exquisite arrangement of scales and pigment patterns, making them testable models for mechanisms of pattern formation. Since they face the constant threat of damage on land, different strategies were developed to accommodate skin homeostasis and regeneration. Temporally, they can be under continuous renewal or sloughing cycles. Spatially, they can be diffuse or form discrete localized growth units (follicles). To understand how gene regulatory networks evolved to produce increasingly complex ectodermal organs, we have to study how prototypic scale-forming pathways in reptiles are modulated to produce appendage novelties. Despite the fact that there are numerous studies of reptile scales, molecular analyses have lagged behind. Here, we underscore how further development of this novel experimental model will be valuable in filling the gaps of our understanding of the Evo-Devo of amniote integuments
Modeling the Effect of Oil Price on Global Fertilizer Prices
The main purpose of this paper is to evaluate the effect of crude oil price on global fertilizer prices in both the mean and volatility. The endogenous structural breakpoint unit root test, the autoregressive distributed lag (ARDL) model, and alternative volatility models, including the generalized autoregressive conditional heteroskedasticity (GARCH) model, Exponential GARCH (EGARCH) model, and GJR model, are used to investigate the relationship between crude oil price and six global fertilizer prices. Weekly data for 2003-2008 for the seven price series are analyzed. The empirical results from ARDL show that most fertilizer prices are significantly affected by the crude oil price, which explains why global fertilizer prices reached a peak in 2008. We also find that that the volatility of global fertilizer prices and crude oil price from March to December 2008 are higher than in other periods, and that the peak crude oil price caused greater volatility in the crude oil price and global fertilizer prices. As volatility invokes financial risk, the relationship between oil price and global fertilizer prices and their associated volatility is important for public policy relating to the development of optimal energy use, global agricultural production, and financial integration.volatility;crude oil price;global fertilizer price;non-renewable fertilizers;structural breakpoint unit root test
- …