661 research outputs found

    Dynamical correlation functions and the related physical effects in three-dimensional Weyl/Dirac semimetals

    Get PDF
    We present a unified derivation of the dynamical correlation functions including density-density, density-current and current-current, of three-dimensional Weyl/Dirac semimetals by use of the Passarino-Veltman reduction scheme at zero temperature. The generalized Kramers-Kronig relations with arbitrary order of subtraction are established to verify these correlation functions. Our results lead to the exact chiral magnetic conductivity and directly recover the previous ones in several limits. We also investigate the magnetic susceptibilities, the orbital magnetization and briefly discuss the impact of electron interactions on these physical quantities within the random phase approximation. Our work could provide a starting point for the investigation of the nonlocal transport and optical properties due to the higher-order spatial dispersion in three-dimensional Weyl/Dirac semimetals.Comment: 21 pages, 3+1 figures, 1 table. Accepted in PR

    RKKY interaction in three-dimensional electron gases with linear spin-orbit coupling

    Get PDF
    We theoretically study the impacts of linear spin-orbit coupling (SOC) on the Ruderman-Kittel-Kasuya-Yosida interaction between magnetic impurities in two kinds of three-dimensional noncentrosymmetric systems. It has been found that linear SOCs lead to the Dzyaloshinskii-Moriya interaction and the Ising interaction, in addition to the conventional Heisenberg interaction. These interactions possess distinct range functions from three dimensional electron gases and Dirac/Weyl semimetals. In the weak SOC limit, the Heisenberg interaction dominates over the other two interactions in a moderately large region of parameters. Sufficiently strong Rashba SOC makes the Dzyaloshinskii-Moriya interaction or the Ising interaction dominate over the Heisenberg interaction in some regions. The change in topology of the Fermi surface leads to some quantitative changes in periods of oscillations of range functions. The anisotropy of Ruderman-Kittel-Kasuya-Yosida interaction in bismuth tellurohalides family BiTeXX (XX = Br, Cl, and I) originates from both the specific form of Rashba SOC and the anisotropic effective mass. Our work provides some insights into understanding observed spin textures and the application of these materials in spintronics.Comment: 11 pages, 4 figures, Final Version in PR

    Social Optima in Leader-Follower Mean Field Linear Quadratic Control

    Full text link
    This paper investigates a linear quadratic mean field leader-follower team problem, where the model involves one leader and a large number of weakly-coupled interactive followers. The leader and the followers cooperate to optimize the social cost. Specifically, for any strategy provided first by the leader, the followers would like to choose a strategy to minimize social cost functional. Using variational analysis and person-by-person optimality, we construct two auxiliary control problems. By solving sequentially the auxiliary control problems with consistent mean field approximations, we can obtain a set of decentralized social optimality strategy with help of a class of forward-backward consistency systems. The relevant Stackelberg equilibrium is further proved under some proper conditions

    The role of crosslinking density in surface stress and surface energy of soft solids

    Full text link
    Surface stress and surface energy are two fundamental parameters that determine the surface properties of any materials. While it is commonly believed that the surface stress and surface energy of liquids are identical, the relationship between the two parameters in soft polymeric gels remains debatable. In this work, we measured the surface stress and surface energy of soft silicone gels with varying weight ratios of crosslinkers in soft wetting experiments. Above a critical density, k0k_0, the surface stress was found to increase significantly with crosslinking density while the surface energy remained unchanged. In this regime, we can estimate a non-zero surface elastic modulus that also increases with the ratio of crosslinkers. By comparing the surface mechanics of the soft gels with their bulk rheology, the surface properties near the critical density k0k_0 were found to be closely related to the underlying percolation transition of the polymer networks.Comment: 9 pages, 7 figure

    Modelling, Analysis, and Design of a Frequency-Droop-Based Virtual Synchronous Generator for Microgrid Applications

    Get PDF
    corecore