753 research outputs found

    Applying Information Integration Theory on the Modeling of Price Forecasting – An Example of Online Trading on Ebay

    Get PDF
    Because of the booming of internet technology and the great promotion internet portal, on-line exchange is more popular in the recent years. This study attempts to integrate concepts of Information Integrate Theory; Anchoring and Adjustment Method to explore the buyer’s trade behavior between two different cultures. After observing the historical data on Yahoo’s Taiwan and Yahoo’s America, the anchoring effect and order effect during the process of a C2C auction is proposed in this study. Chinese buyers seem willing to pay much their attention on pricing during the whole process of an auction than American people do. But, the same phenomenon does exist for American doing a bid on a higher-priced luxury commodity. It sounds for a luxury product, there is a common pricing strategy existed between people of two different cultures. The results provide a very promised direction for knowledge capture and decision analysis for trading, and more works for data mining on pricing for different commodities, cultures, or other kinds of variables related to products and members of market might be a possible future approach for building a knowledge management system for a pricing mechanism for the market

    Decision Theory-Based COI-SNP Tagging Approach for 126 Scombriformes Species Tagging

    Get PDF
    The mitochondrial gene cytochrome c oxidase I (COI) is commonly used for DNA barcoding in animals. However, most of the COI barcode nucleotides are conserved and sequences longer than about 650 base pairs increase the computational burden for species identification. To solve this problem, we propose a decision theory-based COI SNP tagging (DCST) approach that focuses on the discrimination of species using single nucleotide polymorphisms (SNPs) as the variable nucleotides of the sequences of a group of species. Using the example of 126 teleost mackerel fish species (order: Scombriformes), we identified 281 SNPs by alignment and trimming of their COI sequences. After decision rule making, 49 SNPs in 126 fish species were determined using the scoring system of the DCST approach. These COI-SNP barcodes were finally transformed into one-dimensional barcode images. Our proposed DCST approach simplifies the computational complexity and identifies the most effective and fewest SNPs to resolve or discriminate species for species tagging

    SNP-RFLPing: restriction enzyme mining for SNPs in genomes

    Get PDF
    BACKGROUND: The restriction fragment length polymorphism (RFLP) is a common laboratory method for the genotyping of single nucleotide polymorphisms (SNPs). Here, we describe a web-based software, named SNP-RFLPing, which provides the restriction enzyme for RFLP assays on a batch of SNPs and genes from the human, rat, and mouse genomes. RESULTS: Three user-friendly inputs are included: 1) NCBI dbSNP "rs" or "ss" IDs; 2) NCBI Entrez gene ID and HUGO gene name; 3) any formats of SNP-in-sequence, are allowed to perform the SNP-RFLPing assay. These inputs are auto-programmed to SNP-containing sequences and their complementary sequences for the selection of restriction enzymes. All SNPs with available RFLP restriction enzymes of each input genes are provided even if many SNPs exist. The SNP-RFLPing analysis provides the SNP contig position, heterozygosity, function, protein residue, and amino acid position for cSNPs, as well as commercial and non-commercial restriction enzymes. CONCLUSION: This web-based software solves the input format problems in similar softwares and greatly simplifies the procedure for providing the RFLP enzyme. Mixed free forms of input data are friendly to users who perform the SNP-RFLPing assay. SNP-RFLPing offers a time-saving application for association studies in personalized medicine and is freely available at

    Improved branch and bound algorithm for detecting SNP-SNP interactions in breast cancer

    Get PDF
    BACKGROUND: Single nucleotide polymorphisms (SNPs) in genes derived from distinct pathways are associated with a breast cancer risk. Identifying possible SNP-SNP interactions in genome-wide case–control studies is an important task when investigating genetic factors that influence common complex traits; the effects of SNP-SNP interaction need to be characterized. Furthermore, observations of the complex interplay (interactions) between SNPs for high-dimensional combinations are still computationally and methodologically challenging. An improved branch and bound algorithm with feature selection (IBBFS) is introduced to identify SNP combinations with a maximal difference of allele frequencies between the case and control groups in breast cancer, i.e., the high/low risk combinations of SNPs. RESULTS: A total of 220 real case and 334 real control breast cancer data are used to test IBBFS and identify significant SNP combinations. We used the odds ratio (OR) as a quantitative measure to estimate the associated cancer risk of multiple SNP combinations to identify the complex biological relationships underlying the progression of breast cancer, i.e., the most likely SNP combinations. Experimental results show the estimated odds ratio of the best SNP combination with genotypes is significantly smaller than 1 (between 0.165 and 0.657) for specific SNP combinations of the tested SNPs in the low risk groups. In the high risk groups, predicted SNP combinations with genotypes are significantly greater than 1 (between 2.384 and 6.167) for specific SNP combinations of the tested SNPs. CONCLUSIONS: This study proposes an effective high-speed method to analyze SNP-SNP interactions in breast cancer association studies. A number of important SNPs are found to be significant for the high/low risk group. They can thus be considered a potential predictor for breast cancer association

    SNP-RFLPing 2: an updated and integrated PCR-RFLP tool for SNP genotyping

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>PCR-restriction fragment length polymorphism (RFLP) assay is a cost-effective method for SNP genotyping and mutation detection, but the manual mining for restriction enzyme sites is challenging and cumbersome. Three years after we constructed SNP-RFLPing, a freely accessible database and analysis tool for restriction enzyme mining of SNPs, significant improvements over the 2006 version have been made and incorporated into the latest version, SNP-RFLPing 2.</p> <p>Results</p> <p>The primary aim of SNP-RFLPing 2 is to provide comprehensive PCR-RFLP information with multiple functionality about SNPs, such as SNP retrieval to multiple species, different polymorphism types (bi-allelic, tri-allelic, tetra-allelic or indels), gene-centric searching, HapMap tagSNPs, gene ontology-based searching, miRNAs, and SNP500Cancer. The RFLP restriction enzymes and the corresponding PCR primers for the natural and mutagenic types of each SNP are simultaneously analyzed. All the RFLP restriction enzyme prices are also provided to aid selection. Furthermore, the previously encountered updating problems for most SNP related databases are resolved by an on-line retrieval system.</p> <p>Conclusions</p> <p>The user interfaces for functional SNP analyses have been substantially improved and integrated. SNP-RFLPing 2 offers a new and user-friendly interface for RFLP genotyping that can be used in association studies and is freely available at <url>http://bio.kuas.edu.tw/snp-rflping2</url>.</p

    KINEMATICAL ANALYSIS OF TWO DIFFERENT FOREHAND BADMINTON DROP SHOTS TECHNIQUES

    Get PDF
    The purpose of this study was to compare the kinematics variables between badminton forehand regular and reverse slice drop shots. The participants were eight elite male players. Eight Vicon Motion T20s System cameras (300Hz) were used to record the 3D kinematic data, which were computed by Visual 3D software. All the variables were tested by Wilcoxon rank analysis of variance nonparametric statistical test with the significant level at a = .05. The results showed that there was significant difference between the two forehand drop shots in the racket pan angle. The strategy of two drop shots seems different. That might because the reverse slice drop was with greater shoulder abduction movement than the regular drop shot. The players performed reverse slice drop shot might because that the abduction movement was similar with the smash

    V-MitoSNP: visualization of human mitochondrial SNPs

    Get PDF
    BACKGROUND: Mitochondrial single nucleotide polymorphisms (mtSNPs) constitute important data when trying to shed some light on human diseases and cancers. Unfortunately, providing relevant mtSNP genotyping information in mtDNA databases in a neatly organized and transparent visual manner still remains a challenge. Amongst the many methods reported for SNP genotyping, determining the restriction fragment length polymorphisms (RFLPs) is still one of the most convenient and cost-saving methods. In this study, we prepared the visualization of the mtDNA genome in a way, which integrates the RFLP genotyping information with mitochondria related cancers and diseases in a user-friendly, intuitive and interactive manner. The inherent problem associated with mtDNA sequences in BLAST of the NCBI database was also solved. DESCRIPTION: V-MitoSNP provides complete mtSNP information for four different kinds of inputs: (1) color-coded visual input by selecting genes of interest on the genome graph, (2) keyword search by locus, disease and mtSNP rs# ID, (3) visualized input of nucleotide range by clicking the selected region of the mtDNA sequence, and (4) sequences mtBLAST. The V-MitoSNP output provides 500 bp (base pairs) flanking sequences for each SNP coupled with the RFLP enzyme and the corresponding natural or mismatched primer sets. The output format enables users to see the SNP genotype pattern of the RFLP by virtual electrophoresis of each mtSNP. The rate of successful design of enzymes and primers for RFLPs in all mtSNPs was 99.1%. The RFLP information was validated by actual agarose electrophoresis and showed successful results for all mtSNPs tested. The mtBLAST function in V-MitoSNP provides the gene information within the input sequence rather than providing the complete mitochondrial chromosome as in the NCBI BLAST database. All mtSNPs with rs number entries in NCBI are integrated in the corresponding SNP in V-MitoSNP. CONCLUSION: V-MitoSNP is a web-based software platform that provides a user-friendly and interactive interface for mtSNP information, especially with regard to RFLP genotyping. Visual input and output coupled with integrated mtSNP information from MITOMAP and NCBI make V-MitoSNP an ideal and complete visualization interface for human mtSNPs association studies
    corecore