3 research outputs found
Ranking Influential Nodes of Fake News Spreading on Mobile Social Networks
Online fake news can generate a negative impact on both users and society. Due to the concerns with spread of fake news and misinformation, assessing the network influence of online users has become an important issue. This study quantifies the influence of nodes by proposing an algorithm based on information entropy theory. Dynamic process of influence of nodes is characterized on mobile social networks (MSNs). Weibo (i.e., the Chinese version of microblogging) users are chosen to build the real network and quantified influence of them is analyzed according to the model proposed in this paper. MATLAB is employed to simulate and validate the model. Results show the comprehensive influence of nodes increases with the rise of two factors: the number of nodes connected to them and the frequency of their interaction. Indirect influence of nodes becomes stronger than direct influence when the network scope rises. This study can help relevant organizations effectively oversee the spread of online fake news on MSNs
Mining Magnaporthe oryzae sRNAs With Potential Transboundary Regulation of Rice Genes Associated With Growth and Defense Through Expression Profile Analysis of the Pathogen-Infected Rice
In recent years, studies have shown that phytopathogenic fungi possess the ability of cross-kingdom regulation of host plants through small RNAs (sRNAs). Magnaporthe oryzae, a causative agent of rice blast, introduces disease by penetrating the rice tissues through appressoria. However, little is known about the transboundary regulation of M. oryzae sRNAs during the interaction of the pathogen with its host rice. Therefore, investigation of the regulation of M. oryzae through sRNAs in the infected rice plants has important theoretical and practical significance for disease control and production improvement. Based on the high-throughput data of M. oryzae sRNAs and the mixed sRNAs during infection, the differential expressions of sRNAs in M. oryzae before and during infection were compared, it was found that expression levels of 366 M. oryzae sRNAs were upregulated significantly during infection. We trained a SVM model which can be used to predict differentially expressed sRNAs, which has reference significance for the prediction of differentially expressed sRNAs of M. oryzae homologous species, and can facilitate the research of M. oryzae in the future. Furthermore, fifty core targets were selected from the predicted target genes on rice for functional enrichment analysis, the analysis reveals that there are nine biological processes and one KEGG pathway associated with rice growth and disease defense. These functions correspond to thirteen rice genes. A total of fourteen M. oryzae sRNAs targeting the rice genes were identified by data analysis, and their authenticity was verified in the database of M. oryzae sRNAs. The 14 M. oryzae sRNAs may participate in the transboundary regulation process and act as sRNA effectors to manipulate the rice blast process