453 research outputs found

    Delayed versus immediate inoculation of sputum media for diagnosis of pneumonia

    Get PDF

    Perinatal Gene-Gene and Gene-Environment Interactions on IgE Production and Asthma Development

    Get PDF
    Atopic asthma is a complex disease associated with IgE-mediated immune reactions. Numerous genome-wide studies identified more than 100 genes in 22 chromosomes associated with atopic asthma, and different genetic backgrounds in different environments could modulate susceptibility to atopic asthma. Current knowledge emphasizes the effect of tobacco smoke on the development of childhood asthma. This suggests that asthma, although heritable, is significantly affected by gene-gene and gene-environment interactions. Evidence has recently shown that molecular mechanism of a complex disease may be limited to not only DNA sequence differences, but also gene-environmental interactions for epigenetic difference. This paper reviews and summarizes how gene-gene and gene-environment interactions affect IgE production and the development of atopic asthma in prenatal and childhood stages. Based on the mechanisms responsible for perinatal gene-environment interactions on IgE production and development of asthma, we formulate several potential strategies to prevent the development of asthma in the perinatal stage

    Concept and Feasibility of One-Embedded System Payload Including Baseband Communication

    Get PDF
    Traditional approach of payload design develops modules separately such as control, compression and communication. Due to increasing demand of shorter development cycles and lower cost, we shall develop a highly adaptive approach for payload implementation so that we can update it in a short time according to the need of a new mission. Besides, the optimization of payload performance and communication link together becomes possible. Based on these, we propose a “one-embedded system” payload approach. All the control, file management, processing such as compression, and communications are implemented in one built-in embedded system. In other words, after the sensor signal is converted as digital data (after ADC, analog-to-digital-converter), the data gets into the proposed embedded system. And the system “does everything” and then outputs data to DAC (digital-to-analog-converter) and then transmitted it in analog form. The proposed embedded system includes a FPGA implementing a processor IP. Due to the programmable characteristic of FPGA, hardware interfaces can be adjusted quickly according to various mission requirements. Besides, because of the flexibility and adaptability of software, code can be updated to optimize performance according to various tasks during flight. In this work, we provide concept, guideline of optimization, structure, feasibility, benefits and risks of one-embedded system payload approach. An example of implementation for optical remotes sensing payload including interfaces will be investigated

    Induction of apoptosis by the retinoid inducible growth regulator RIG1 depends on the NC motif in HtTA cervical cancer cells

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Retinoid-inducible gene 1 (RIG1), also known as tazarotene-induced gene 3 or retinoic-acid receptor responder 3, is a growth regulator, which induces apoptosis and differentiation. RIG1 is classified into the NC protein family. This study investigated functional domains and critical amino acids associated with RIG1-mediated cell death and apoptosis.</p> <p>Results</p> <p>Using enhanced green fluorescence protein (EGFP)-tagged RIG1 variants, RIG1 proteins with deletion at the NC domain significantly decreased cell death induced by RIG1, and fusion variants containing only the NC domain significantly induced apoptosis of HtTA cervical cancer cells. The EGFP-RIG1-induced apoptosis was significantly decreased in cells expressing N<sup>112</sup>C<sup>113 </sup>motif double- (NC→FG) or triple- (NCR→FGE) mutated RIG1 variants. Using dodecapeptides, nuclear localization and profound cell death was observed in HtTA cells expressing wild type RIG1<sub>111–123 </sub>or Leu<sup>121</sup>-mutated RIG1<sub>111–123</sub>:L→ C peptide, but peptides double- or triple-mutated at the NC motif alone, RIG1<sub>111–123</sub>:NC→FG or RIG1<sub>111–123</sub>:NCR→FGE, were cytoplasmically localized and did not induce apoptosis. The RIG1<sub>111–123 </sub>also induced apoptosis of A2058 melanoma cells but not normal human fibroblasts.</p> <p>Conclusion</p> <p>The NC domain, especially the NC motif, plays the major role in RIG1-mediated pro-apoptotic activity. The RIG1<sub>111–123 </sub>dodecapeptide exhibited strong pro-apoptotic activity and has potential as an anticancer drug.</p

    Mechanical regulation of cancer cell apoptosis and autophagy: Roles of bone morphogenetic protein receptor, Smad1/5, and p38 MAPK

    Get PDF
    AbstractMechanical forces induced by interstitial fluid flow in and surrounding tissues and by blood/lymphatic flow in vessels may modulate cancer cell invasion and metastasis and anticancer drug delivery. Our previous study demonstrated that laminar flow-induced shear stress induces G2/M arrest in tumor cells. However, whether shear stress modulates final cell fate remains unclear. In this study, we investigated the role of flow-induced shear stress in modulating the survival of four human tumor cell lines, i.e., Hep3B hepatocarcinoma cells, MG63 osteosarcoma cells, SCC25 oral squamous carcinoma cells, and A549 carcinomic alveolar basal epithelial cells. Laminar shear stress (LSS) ranging from 0.5 to 12dyn/cm2 induced death of these four tumor cell lines. In contrast to LSS at 0.5dyn/cm2, oscillatory shear stress (OSS) at 0.5±4dyn/cm2 cannot induce cancer cell death. Both LSS and OSS had no effect on human normal hepatocyte, lung epithelial, and endothelial cells. Application of LSS to these four cell lines increased the percentage of cells stained positively for annexin V–FITC, with up-regulations of cleaved caspase-8, -9, and -3, and PARP. In addition, LSS also induced Hep3B cell autophagy, as detected by acidic vesicular organelle formation, LC3B transformation, and p62/SQSTM1 degradation. By transfecting with small interfering RNA, we found that the shear-induced apoptosis and autophagy are mediated by bone morphogenetic protein receptor type (BMPR)-IB, BMPR-specific Smad1 and Smad5, and p38 mitogen-activated protein kinase in Hep3B cells. Our findings provide insights into the molecular mechanisms by which shear stress induces apoptosis and autophagy in tumor cells

    Factors associated with outcomes of second-line treatment for EGFR-mutant non-small-cell lung cancer patients after progression on first- or second-generation EGFR-tyrosine kinase inhibitor treatment

    Get PDF
    PurposeEpidermal growth factor receptor-tyrosine kinase inhibitors (EGFR-TKIs) are standard first-line treatments for advanced EGFR-mutant non-small-cell lung cancer (NSCLC) patients. However, factors associated with outcomes after progression on first-line therapy are seldom investigated.Materials and methodsFrom January 2016 to December 2020, we enrolled 242 EGFR-mutant stage IIIB–IV NSCLC patients who progressed on first- or second-generation EGFR-TKI treatments, and 206 of them receive second-line treatments after disease progression. The factors that predict the survival outcomes of different second-line treatments after disease progression were evaluated. Clinical and demographic characteristics, including metastatic sites, neutrophil-to-lymphocyte ratio (NLR) at first-line progression, and second-line treatment regimens, and whether re-biopsied after disease progression or not, were reviewed for outcome analysis.ResultsThe univariate analysis showed that the PFS was shorted in male patients (p =0.049), patients with ECOG performance state ≥ 2 (p =0.014), former smokers (p =0.003), patients with brain metastasis (p =0.04), second-line chemotherapy or EGFR-TKIs other than osimertinib (p =0.002), and NLR ≥5.0 (p=0.024). In addition, second-line osimertinib was associated with longer OS compared to chemotherapy and other EGFR-TKI treatment (p =0.001). In the multivariate analysis, only second-line osimertinib was an independent predictor of PFS (p =0.023). Re-biopsy after first-line treatment was associated with a trend of better OS. Patients with NLR ≥5.0 at disease progression had shorter OS than patients with NLR &lt;5.0 (p = 0.008).ConclusionThe benefits of osimertinib necessitate that aggressive re-biopsy after progression on first- or second-generation EGFR-TKI treatment is merited for appropriate second-line treatments to provide better outcomes for these patients
    corecore