2,262 research outputs found

    Fraction Constraint in Partial Wave Analysis

    Full text link
    To resolve the non-convex optimization problem in partial wave analysis, this paper introduces a novel approach that incorporates fraction constraints into the likelihood function. This method offers significant improvements in both the efficiency of pole searching and the reliability of resonance selection within partial wave analysis

    Event Generation and Consistence Test for Physics with Sliced Wasserstein Distance

    Full text link
    In the field of modern high-energy physics research, there is a growing emphasis on utilizing deep learning techniques to optimize event simulation, thereby expanding the statistical sample size for more accurate physical analysis. Traditional simulation methods often encounter challenges when dealing with complex physical processes and high-dimensional data distributions, resulting in slow performance. To overcome these limitations, we propose a solution based on deep learning with the sliced Wasserstein distance as the loss function. Our method shows its ability on high precision and large-scale simulations, and demonstrates its effectiveness in handling complex physical processes. By employing an advanced transformer learning architecture, we initiate the learning process from a Monte Carlo sample, and generate high-dimensional data while preserving all original distribution features. The generated data samples have passed the consistence test, that is developed to calculate the confidence of the high-dimentional distributions of the generated data samples through permutation tests. This fast simulation strategy, enabled by deep learning, holds significant potential not only for increasing sample sizes and reducing statistical uncertainties but also for applications in numerical integration, which is crucial in partial wave analysis, high-precision sample checks, and other related fields. It opens up new possibilities for improving event simulation in high-energy physics research

    Klotho, stem cells, and aging

    Get PDF

    Large-scale diversity estimation through surname origin inference

    Full text link
    The study of surnames as both linguistic and geographical markers of the past has proven valuable in several research fields spanning from biology and genetics to demography and social mobility. This article builds upon the existing literature to conceive and develop a surname origin classifier based on a data-driven typology. This enables us to explore a methodology to describe large-scale estimates of the relative diversity of social groups, especially when such data is scarcely available. We subsequently analyze the representativeness of surname origins for 15 socio-professional groups in France

    Knowledge Distillation Under Ideal Joint Classifier Assumption

    Full text link
    Knowledge distillation is a powerful technique to compress large neural networks into smaller, more efficient networks. Softmax regression representation learning is a popular approach that uses a pre-trained teacher network to guide the learning of a smaller student network. While several studies explored the effectiveness of softmax regression representation learning, the underlying mechanism that provides knowledge transfer is not well understood. This paper presents Ideal Joint Classifier Knowledge Distillation (IJCKD), a unified framework that provides a clear and comprehensive understanding of the existing knowledge distillation methods and a theoretical foundation for future research. Using mathematical techniques derived from a theory of domain adaptation, we provide a detailed analysis of the student network's error bound as a function of the teacher. Our framework enables efficient knowledge transfer between teacher and student networks and can be applied to various applications

    A Novel Interface Database of Graphene Nanoribbon from Density Functional Theory

    Full text link
    Interfaces play a crucial role in determining the overall performance and functionality of electronic devices and systems. Driven by the data science, machine learning (ML) reveals excellent guidance for material selection and device design, in which an advanced database is crucial for training models with state-of-the-art (SOTA) precision. However, a systematic database of interfaces is still in its infancy due to the difficulties in collecting raw data in experiment and the expensive first-principles computational cost in density functional theory (DFT). In this paper, we construct ample interface structures of graphene nanoribbons (GNR), whose interfacial morphology can be precisely fabricated based on specific molecular precursors. The GNR interfaces serve as promising candidates since their bandgaps can be modulated. Their physical properties including energy bands and density of states (DOS) maps are obtained under reasonable calculation parameters. This database can provide theoretical guidance for the design of electronic devices and accelerate the ML study of various physical quantities

    Microscopic Investigation of a Copper Molten Mark by Optical Microscopy (OM) and Atomic Force Microscopy (AFM)

    Get PDF
    AbstractA wide variety of physical and chemical detecting methods have been proposed for discriminating between and electric arc bead that caused a fire, versus one that was caused by the fire itself. The simplest proposed method claims that examination of the molten marks in a bead under a microscope will suffice to make the distinction. Generally, copper molten marks of the bead are examined by using optical (OM) and scanning electron microscopy (SEM). In this paper, OM and AFM were employed to investigate a molten mark formed in laboratory. AFM observation reveals that AFM could be an auxiliary method to investigate the copper molten mark formed in the fire in order to confirm the reasons of the fire
    • …
    corecore