3,929 research outputs found
Multi-objective random search algorithm for simultaneously optimizing wind farm layout and number of turbines
Assembling a cellulase cocktail and a cellodextrin transporter into a yeast host for CBP ethanol production
Background: Many microorganisms possess enzymes that can efficiently degrade lignocellulosic materials, but donot have the capability to produce a large amount of ethanol. Thus, attempts have been made to transform suchenzymes into fermentative microbes to serve as hosts for ethanol production. However, an efficient host for aconsolidated bioprocess (CBP) remains to be found. For this purpose, a synthetic biology technique that cantransform multiple genes into a genome is instrumental. Moreover, a strategy to select cellulases that interactsynergistically is needed.Results: To engineer a yeast for CBP bio-ethanol production, a synthetic biology technique, called “promoter-basedgene assembly and simultaneous overexpression” (PGASO), that can simultaneously transform and express multiplegenes in a kefir yeast, Kluyveromyces marxianus KY3, was recently developed. To formulate an efficient cellulasecocktail, a filter-paper-activity assay for selecting heterologous cellulolytic enzymes was established in this study andused to select five cellulase genes, including two cellobiohydrolases, two endo-β-1,4-glucanases and onebeta-glucosidase genes from different fungi. In addition, a fungal cellodextrin transporter gene was chosen totransport cellodextrin into the cytoplasm. These six genes plus a selection marker gene were one-step assembledinto the KY3 genome using PGASO. Our experimental data showed that the recombinant strain KR7 could expressthe five heterologous cellulase genes and that KR7 could convert crystalline cellulose into ethanol.Conclusion: Seven heterologous genes, including five cellulases, a cellodextrin transporter and a selection marker,were simultaneously transformed into the KY3 genome to derive a new strain, KR7, which could directly convertcellulose to ethanol. The present study demonstrates the potential of our strategy of combining a cocktailformulation protocol and a synthetic biology technique to develop a designer yeast host
SDSS J013127.34032100.1: A newly discovered radio-loud quasar at with extremely high luminosity
Only very few z>5 quasars discovered to date are radio-loud, with a
radio-to-optical flux ratio (radio-loudness parameter) higher than 10. Here we
report the discovery of an optically luminous radio-loud quasar, SDSS
J013127.34-032100.1 (J0131-0321 in short), at z=5.18+-0.01 using the Lijiang
2.4m and Magellan telescopes. J0131-0321 has a spectral energy distribution
consistent with that of radio-loud quasars. With an i-band magnitude of 18.47
and radio flux density of 33 mJy, its radio-loudness parameter is ~100. The
optical and near-infrared spectra taken by Magellan enable us to estimate its
bolometric luminosity to be L_bol ~ 1.1E48 erg/s, approximately 4.5 times
greater than that of the most distant quasar known to date. The black hole mass
of J0131-0321 is estimated to be 2.7E9 solar masses, with an uncertainty up to
0.4 dex. Detailed physical properties of this high-redshift, radio-loud,
potentially super-Eddington quasar can be probed in the future with more
dedicated and intensive follow-up observations using multi-wavelength
facilities.Comment: 5 pages, 3 figures, accepted to ApJ
- …
